平面直角坐標(biāo)系內(nèi),點(diǎn)A(n,1-n)一定不在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】分析:本題可轉(zhuǎn)化為解不等式組的問(wèn)題,求出無(wú)解的不等式即可.
解答:解:法1:由題意可得、、,
解這四組不等式可知無(wú)解,
因而點(diǎn)A的橫坐標(biāo)是負(fù)數(shù),縱坐標(biāo)是負(fù)數(shù),不能同時(shí)成立,即點(diǎn)A一定不在第三象限.
法2:點(diǎn)A橫縱坐標(biāo)滿足x+y=1,即點(diǎn)A(n,1-n)在直線y=1-x上,
而y=1-x過(guò)一、二、四象限,
故A(n,1-n)一定不在第三象限.
故選C.
點(diǎn)評(píng):本題主要考查平面直角坐標(biāo)系中各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào),把符號(hào)問(wèn)題轉(zhuǎn)化為解不等式組的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們給出如下定義:如圖①,平面內(nèi)兩條直線l1、l2相交于點(diǎn)O,對(duì)于平面內(nèi)的任意一點(diǎn)M,若p、q分別是點(diǎn)M到直線l1和l2的距離(P≥0,q≥0),稱有序非負(fù)實(shí)數(shù)對(duì)[p,q]是點(diǎn)M的距離坐標(biāo).
根據(jù)上述定義,請(qǐng)解答下列問(wèn)題:
如圖②,平面直角坐標(biāo)系xoy內(nèi),直線l1的關(guān)系式為y=x,直線l2的關(guān)系式為y=
1
2
x
,M是平面直角坐標(biāo)系內(nèi)的點(diǎn).
(1)若p=q=0,求距離坐標(biāo)為[0,0]時(shí),點(diǎn)M的坐標(biāo);
(2)若q=0,且p+q=m(m>0),利用圖②,在第一象限內(nèi),求距離坐標(biāo)為[p,q]時(shí),點(diǎn)M的坐標(biāo);
(3)若p=1,q=
1
2
,則坐標(biāo)平面內(nèi)距離坐標(biāo)為[p,q]時(shí),點(diǎn)M可以有幾個(gè)位置?并用三角尺在圖③畫出符合條件的點(diǎn)M(簡(jiǎn)要說(shuō)明畫法).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、在平面直角坐標(biāo)系內(nèi),點(diǎn)A的橫坐標(biāo)、縱坐標(biāo)合起來(lái)叫點(diǎn)A的
坐標(biāo)
,它是一對(duì)
有序?qū)崝?shù)對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•道里區(qū)二模)如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),直線y=
1
2
x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B點(diǎn)C(4,O),過(guò)點(diǎn)C作AB的垂CD,點(diǎn)D為垂足,直線CD交y軸于點(diǎn)E,
(1)求點(diǎn)E的坐標(biāo).
(2)連接AE,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1個(gè)單位/秒的速度沿AC向終點(diǎn)C運(yùn)動(dòng),過(guò)點(diǎn)P作PP1∥CE交AE于點(diǎn)P1,設(shè)點(diǎn)P(點(diǎn)P不與點(diǎn)A,C重合時(shí))運(yùn)動(dòng)的時(shí)間為t秒,PP1的長(zhǎng)為y,求y與t之間的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,點(diǎn)Q為P1E中點(diǎn),連接DQ,當(dāng)t為何值時(shí)有
PP1
DQ
=
2
5
?并求出此時(shí)同時(shí)經(jīng)過(guò)P、O、E三點(diǎn)的圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),直線y=
1
2
x
+6交x軸于點(diǎn)A,交y軸于點(diǎn)B,過(guò)點(diǎn)B作AB的垂線交x軸于點(diǎn)C,∠ABC的平分線交AC于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo);
(2)若P從點(diǎn)A出發(fā)以每秒
5
個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),過(guò)點(diǎn)P作x軸的平行線交BD于點(diǎn)E,交BC于點(diǎn)F,設(shè)線段EF的長(zhǎng)為y,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(t>0)秒,求y與t之間的函數(shù)關(guān)系式,不需寫出自變量t的取值范圍.
(3)在(2)的條件下,設(shè)同時(shí)經(jīng)過(guò)B,C,D三點(diǎn)的圓交AB于B,G兩點(diǎn),當(dāng)t為何值時(shí)有EF=
5
3
PG?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系內(nèi),點(diǎn)P在第一象限,若點(diǎn)P到每條坐標(biāo)軸的距離都是3,則點(diǎn)P的坐標(biāo)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案