(2012•道里區(qū)二模)如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),直線y=
x+3交x軸于點(diǎn)A,交y軸于點(diǎn)
B點(diǎn)C(4,O),過點(diǎn)C作AB的垂CD,點(diǎn)D為垂足,直線CD交y軸于點(diǎn)E,
(1)求點(diǎn)E的坐標(biāo).
(2)連接AE,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1個(gè)單位/秒的速度沿AC向終點(diǎn)C運(yùn)動(dòng),過點(diǎn)P作PP
1∥CE交AE于點(diǎn)P
1,設(shè)點(diǎn)P(點(diǎn)P不與點(diǎn)A,C重合時(shí))運(yùn)動(dòng)的時(shí)間為t秒,PP
1的長為y,求y與t之間的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,點(diǎn)Q為P
1E中點(diǎn),連接DQ,當(dāng)t為何值時(shí)有
=?并求出此時(shí)同時(shí)經(jīng)過P、O、E三點(diǎn)的圓的面積.