【題目】如圖①,在平面直角坐標(biāo)系中,直徑為 的⊙A經(jīng)過坐標(biāo)系原點O(0,0),與x軸交于點B,與y軸交于點C(0, ).
(1)求點B的坐標(biāo);
(2)如圖②,過點B作⊙A的切線交直線OA于點P,求點P的坐標(biāo);
(3)過點P作⊙A的另一條切線PE,請直接寫出切點E的坐標(biāo).
【答案】
(1)解:如圖①,連接 .
∵ ,
∴ 是⊙ 的直徑.
∴ ,
∵ ,
∴ .
∴ .
∴ .
(2)解:如圖②,過點 作 軸于點 .
∵ 為⊙ 的切線,
∴ .
在Rt 中, , ,
∴ .
∴ .
∴ .
∴ .
∴ .
在Rt 中, , , ,
∴ , .
∵ ,
∴ .
∴ .
(3)解:
【解析】(1)利用90度圓周角所對的弦是直徑,可求出OB即能得出B坐標(biāo);(2)先通過P作x軸的垂線構(gòu)造出橫縱坐標(biāo)對應(yīng)的線段,利用切線的性質(zhì)定理和銳角三角函數(shù),求出坐標(biāo);(3)如圖,利用切線的性質(zhì)定理和切線長定理得出∠ EPA=30度,PE于x軸平行,連接AE ,求出EF、OF即可求出坐標(biāo).
【考點精析】本題主要考查了切線的性質(zhì)定理的相關(guān)知識點,需要掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是直角三角形,∠C=90°,∠CAB的角平分線AE與 AB的垂直平分線DE相交于點E.
(1)如圖2,若點E正好落在邊BC上.
①求∠B的度數(shù)
②證明:BC=3DE
(2)如圖3,若點E滿足C、E、D共線.
求證:AD+DE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在筆直的鐵路上A、B兩點相距25km,C、D為兩村莊,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等.求E應(yīng)建在距A多遠(yuǎn)處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,正比例函數(shù) 與反比例函數(shù) 的圖象交于A,B兩點,點A的橫坐標(biāo)為2,AC⊥x軸于點C,連接BC.
(1)求反比例函數(shù)的表達(dá)式;
(2)若點P是反比例函數(shù) 圖象上的一點,且滿足△OPC的面積是△ABC面積的一半,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°.將△ABC繞點C逆時針旋轉(zhuǎn)得到△A’B’C,旋轉(zhuǎn)角為 ,且0°< <180°.在旋轉(zhuǎn)過程中,點B’可以恰好落在AB的中點處,如圖②.
(1)求∠A的度數(shù);
(2)當(dāng)點C到AA’的距離等于AC的一半時,求 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動課上,老師提出了一個問題,希望同學(xué)們進(jìn)行探究.
在平面直角坐標(biāo)系中,若一次函數(shù) 的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù) 的圖象交于C、D兩點,則AD和BC有怎樣的數(shù)量關(guān)系?
同學(xué)們通過合作討論,逐漸完成了對問題的探究.
(1)小勇說:我們可以從特殊入手,取 進(jìn)行研究(如圖①),此時我發(fā)現(xiàn)AD=BC.
小攀說:在圖①中,分別從點C、D兩點向兩條坐標(biāo)軸作垂線,根據(jù)所學(xué)知識可以知道有兩個圖形的面積是相等的,并能求出確定的值,而且在圖②中,此時 ,這一結(jié)論仍然成立,即 的面積= 的面積,此面積的值為 .
小高說:我還發(fā)現(xiàn),在圖①或圖②中連接某兩個已知點,得到的線段與AD和BC都相等,這條線段是 .
請完成以上填空;
(2)請結(jié)合以上三位同學(xué)的討論,對圖②所示的情況下,證明AD=BC;
小峰突然提出一個問題:通過剛才的證明,我們可以知道當(dāng)直線與雙曲線的兩個交點都在第一象限時, 總是成立的,但我發(fā)現(xiàn)當(dāng)k的取值不同時,這兩個交點有可能在不同象限,結(jié)論還成立嗎?
(3)請你結(jié)合小峰提出的問題,在圖③中畫出示意圖,并判斷結(jié)論是否成立.若成立,請寫出證明過程;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是BC的中點,點E是AD上任意一點.
(1)如圖1,連接BE、CE,問:BE=CE成立嗎?并說明理由;
(2)如圖2,若∠BAC=45°,BE的延長線與AC垂直相交于點F時,問:EF=CF成立嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列因式分解的過程:
①x2-xy+4x-4y=(x2-xy)+(4x-4y)=x(x-y)+4(x-y)=(x-y)(x+4).
②a2-b2-c2+2bc=a2-(b2+c2-2bc)=a2-(b-c)2=(a+b-c)(a-b+c).
第①題分組后能直接提公因式,第②題分組后能直接運用公式,仿照上述分解因式的方法,把下列各式分解因式:
(1)ad-ac-bc+bd;
(2)x2-6x+9-y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年春季,蔬菜種植場在15公頃的大棚地里分別種植了茄子和西紅柿,總費用是萬元其中,種植茄子和西紅柿每公頃的費用和每公頃獲利情況如表:
每公頃費用萬元 | 每公頃獲利萬元 | |
茄子 | ||
西紅柿 |
請解答下列問題:
求出茄子和西紅柿的種植面積各為多少公頃?
種植場在這一季共獲利多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com