【題目】如圖,已知拋物線經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.
【答案】(1);(2)P(,);(3)Q(﹣4,1),Q(3,1).
【解析】
試題分析:(1)∵點(diǎn)A(0,1).B(﹣9,10)在拋物線上,∴,∴,∴拋物線的解析式為;
(2)∵AC∥x軸,A(0,1)
∴=1,∴=6,=0,∴點(diǎn)C的坐標(biāo)(﹣6,1),∵點(diǎn)A(0,1).B(﹣9,10),∴直線AB的解析式為y=﹣x+1,設(shè)點(diǎn)P(m,),∴E(m,﹣m+1),∴PE=﹣m+1﹣()=,∵AC⊥EP,AC=6,∴S四邊形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)
=AC×PE=×6×()==
∵﹣6<m<0,∴當(dāng)m=﹣時(shí),四邊形AECP的面積的最大值是,此時(shí)點(diǎn)P(,).
(3)∵=,∴P(﹣3,﹣2),∴PF=yF﹣yP=3,CF=xF﹣xC=3,∴PF=CF,∴∠PCF=45°;
同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直線AC上存在滿足條件的Q,設(shè)Q(t,1)且AB=,AC=6,CP=.∵以C、P、Q為頂點(diǎn)的三角形與△ABC相似,①當(dāng)△CPQ∽△ABC時(shí),∴,∴,∴t=﹣4,∴Q(﹣4,1);
②當(dāng)△CQP∽△ABC時(shí),∴,∴,∴t=3,∴Q(3,1).
綜上所述:Q(﹣4,1),Q(3,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)頻數(shù)分布表或頻數(shù)分布直方圖求加權(quán)平均數(shù)時(shí),統(tǒng)計(jì)中常用各組的組中值代表各組的實(shí)際數(shù)據(jù),把各組的頻數(shù)看作相應(yīng)組中值的權(quán),請(qǐng)你依據(jù)以上知識(shí),解決下面的實(shí)際問題. 為了解5路公共汽車的運(yùn)營(yíng)情況,公交部門統(tǒng)計(jì)了某天5路公共汽車每個(gè)運(yùn)行班次的載客量,并按載客量的多少分成A,B,C,D四組,得到如下統(tǒng)計(jì)圖:
(1)求A組對(duì)應(yīng)扇形圓心角的度數(shù),并寫出這天載客量的中位數(shù)所在的組;
(2)求這天5路公共汽車平均每班的載客量;
(3)如果一個(gè)月按30天計(jì)算,請(qǐng)估計(jì)5路公共汽車一個(gè)月的總載客量,并把結(jié)果用科學(xué)記數(shù)法表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2 , l3、l4和l1、l2分別交于點(diǎn)A、B、C、D,點(diǎn)P 在直線l3或l4上且不與點(diǎn)A、B、C、D重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若點(diǎn)P在圖(1)位置時(shí),求證:∠3=∠1+∠2;
(2)若點(diǎn)P在圖(2)位置時(shí),請(qǐng)直接寫出∠1、∠2、∠3之間的關(guān)系;
(3)若點(diǎn)P在圖(3)位置時(shí),寫出∠1、∠2、∠3之間的關(guān)系并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(4,3)、B(4,1),把△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后得到△A1B1C.
(1)畫出△A1B1C,直接寫出點(diǎn)A1、B1的坐標(biāo);
(2)求在旋轉(zhuǎn)過程中,△ABC所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班體育委員記錄了第一小組七位同學(xué)定點(diǎn)投籃(每人投10個(gè))的情況,投進(jìn)籃框的個(gè)數(shù)為:6,10,5,3,4,8,4,這組數(shù)據(jù)的中位數(shù)和極差分別是( 。
A. 4,7B. 7,5C. 5,7D. 3,7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)中國(guó)電子商務(wù)研究中心監(jiān)測(cè)數(shù)據(jù)顯示,2015年第一季度中國(guó)輕紡城市場(chǎng)群的商品成交額達(dá)27 800 000 000元,將27 800 000 000用科學(xué)記數(shù)法表示為( )
A.2.78×1010
B.2.78×1011
C.27.8×1010
D.0.278×1011
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別于BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com