【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經(jīng)過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠CAD.
(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.
【答案】(1)證明見解析;(2)2.
【解析】
試題分析:(1)連接OC,易證∠OCA=∠OAC=∠CAD,從而OC∥AD,推出OC⊥MN,可得出直線MN是⊙O的切線;(2)由條件在Rt△ADC中,可求得AD、AC的長,易證△ADC∽△ACB,利用對應邊成比例求出AB的長,半徑即可求出.
試題解析: (1)證明:連接OC,∵OA=OC,∴∠BAC=∠ACO.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠ACO=∠CAD.∽OC∥AD,又∵AD丄MN,∴OC丄MN,∴直線MN是⊙O的切線;(2)解:∵AB是⊙O的直徑,∴∠ACB=90°.∵AD丄MN,∴∠ADC=90°.∵CD=3,∠CAD=30°,∴AD=6,.∵∠BAC=∠CAD,∠ACB=∠ADC,∴△ABC∽△ACD,∴=,
∴,AB=4,∴⊙O的半徑為2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是該拋物線上不同的三點,現(xiàn)將拋物線的對稱軸繞坐標原點O逆時針旋轉90°得到直線a,過拋物線頂點P作PH⊥a于H.
(1)用含m的代數(shù)式表示拋物線的頂點坐標;
(2)若無論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個公共點,求k的值;
(3)當1<PH≤6時,試比較y1,y2,y3之間的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在AB邊上E處,EQ與BC相交于F,若AD=8 cm,AB=6 cm,AE=4cm,則△EBF的周長是______________ cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中.有拋物線和.拋物線經(jīng)過原點,與x軸正半軸交于點A,與其對稱軸交于點B.P是拋物線上一點,且在x軸上方.過點P作x軸的垂線交拋物線于點Q.過點Q作PQ的垂線交拋物線于點(不與點Q重合),連結.設點P的橫坐標為m.
(1)求a的值;
(2)當拋物線經(jīng)過原點時,設△與△OAB重疊部分圖形的周長為l.
①求的值;
②求l與m之間的函數(shù)關系式;
(3)當h為何值時,存在點P,使以點O、A、Q、為頂點的四邊形是軸對稱圖形?直接寫出h的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABC中,AB=AC,點D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.
小明經(jīng)探究發(fā)現(xiàn),過點A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問題得到解決.
(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個)
參考小明思考問題的方法,解答下列問題:
(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點,E為DC的中點,點F在AC的延長線上,且∠CDF=∠EAC,若CF=2,求AB的長;
(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點D、E分別在AB、AC邊上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com