【題目】設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當自變量x=a時,相應的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當x=4時,f(4)=42﹣2×4﹣3=5在平面直角坐標系xOy中,對于函數(shù)的零點給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內對應的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內有零點,即存在c(a≤c≤b),使f(c)=0,則c叫做這個函數(shù)的零點,c也是方程f(x)=0在a≤x≤b范圍內的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.

觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內有零點.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點,﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內y1=f(x)的零點的個數(shù)是
(2)已知函數(shù)y2=f(x)=﹣ 的零點為x1 , x2 , 且x1<1<x2
①求零點為x1 , x2(用a表示);
②在平面直角坐標xOy中,在x軸上A,B兩點表示的數(shù)是零點x1 , x2 , 點 P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,若a是整數(shù),求拋物線y2的表達式并直接寫出線段PQ長的取值范圍.

【答案】
(1)<;1
(2)

解:①∵x1、x2是零點

∴當y=0時,即﹣ =0.

方程可化簡為 x2+2(a﹣1)x+(a2﹣2a)=0.

解方程,得x=﹣a或x=﹣a+2.

∵x1<1<x2,﹣a<﹣a+2,

∴x1=﹣a,x2=﹣a+2.

②∵x1<1<x2,

∴﹣a<1<﹣a+2.

∴﹣1<a<1.

∵a是整數(shù),

∴a=0,所求拋物線的表達式為y=﹣ x2+2

此時頂點C的坐標為C(1, )如圖2,

,

作CD⊥AB于D,連接CQ,

則AD=1,CD= ,tan∠BAC=

∴∠BAC=60°

由拋物線的對稱性可知△ABC是等邊三角形;

由△APM和△BPN是等邊三角形,線段MN的中點為Q可得,

點M、N分別在AC和BC邊上,四邊形PMCN的平行四邊形,

C、Q、P三點共線,且PQ= PC;

∵點P線段AB上運動的過程中,P與A、B兩點不重合,

DC≤PC<AC,DC= ,AC=2,

≤PQ<

≤PQ<1;

線段PQ的長的取值范圍為: ≤PQ<1


【解析】解:(1)①由圖象1,得f(a)f(b)<0,

②在a≤x≤b范圍內y1=f(x)的零點的個數(shù)是 1.
所以答案是:<,1;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某農場要建一個長方形的養(yǎng)雞場,雞場的一邊靠墻,(墻長25m)另外三邊用木欄圍成,木欄長40m.
(1)若養(yǎng)雞場面積為200m2 , 求雞場靠墻的一邊長.
(2)養(yǎng)雞場面積能達到250m2嗎?如果能,請給出設計方案;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A(2,0),以OA為一邊在第四象限內畫正方形OABC,D(m,0)為x軸上的一個動點(m>2),以BD為一直角邊在第四象限內畫等腰直角△BDE,其中∠DBE=90°.

(1)試判斷線段AE、CD的數(shù)量關系,并說明理由;

(2)設DE的中點為F,直線AFy軸于點G.問:隨著點D的運動,點G的位置是否會發(fā)生變化?若保持不變,請求出點G的坐標;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD,E為平面內任意一點,連結DE,將線段DE繞點D順時針旋轉90°得到DG,連結EC,AG.

(1)當點E在正方形ABCD內部時,
①依題意補全圖形;
②判斷AG與CE的數(shù)量關系與位置關系并寫出證明思路.
(2)當點B,D,G在一條直線時,若AD=4,DG= ,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點H在⊙O上,E是 的中點,過點E作EC⊥AH,交AH的延長線于點C.連接AE,過點E作EF⊥AB于點F.

(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD∽四邊形EFGH,連接相應的對角線AC,EG.
(1)求證△ABC∽△EFG;
(2)若 = ,直接寫出四邊形ABCD與四邊形EFGH的面積比為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】CPI指居民消費價格指數(shù),反映居民家庭購買消費商品及服務的價格水平的變動情況.CPI的漲跌率在一定程度受到季節(jié)性因素和天氣因素的影響.根據(jù)北京市2015年與2016年CPI漲跌率的統(tǒng)計圖中的信息,請判斷2015年1~8月份與2016年1~8月份,同月份比較CPI漲跌率下降最多的月份是月;請根據(jù)圖中提供的信息,預估北京市2016年第四季度CPI漲跌率變化趨勢是 , 你的預估理由是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩支清雪隊同時開始清理某路段積雪,一段時間后,乙隊被調往別處,甲隊又用了3小時完成了剩余的清雪任務,已知甲隊每小時的清雪量保持不變,乙隊每小時清雪50噸,甲、乙兩隊在此路段的清雪總量y(噸)與清雪時間x(時)之間的函數(shù)圖象如圖所示.
(1)乙隊調離時,甲、乙兩隊已完成的清雪總量為噸;
(2)求此次任務的清雪總量m;
(3)求乙隊調離后y與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉,使角的兩邊分別與AC、BC的延長線相交,交點分別為點E,F(xiàn),DF與AC交于點M,DE與BC交于點N.
(1)如圖1,若CE=CF,求證:DE=DF;

(2)如圖2,在∠EDF繞點D旋轉的過程中:
①探究三條線段AB,CE,CF之間的數(shù)量關系,并說明理由;
②若CE=4,CF=2,求DN的長.

查看答案和解析>>

同步練習冊答案