【題目】如圖,在等腰中, , 是斜邊上上任一點, 于, 交的延長線于, 于點,交于.
(1)求證: .
(2)探索與、之間的數(shù)量關系.
【答案】(1)證明見解析;(2)AE=EF+BF,理由見解析.
【解析】試題分析:(1)根據(jù)等腰直角三角形的性質和全等三角形的判定ASA和性質可證明;
(2)通過全等三角形的判定AAS證明△ACE≌△CBF,然后根據(jù)全等的性質可求得關系.
試題解析:(1)∵ABC為等腰直角三角形,且CH⊥AB
∴∠ACG=45°
∵∠CAG+∠ACE=90°,∠BCF+∠ACE=90°
∴∠CAG=∠BCF
在△ACG和△CBD中
∴△ACG≌△CBD(ASA)
∴BD=CG
(2)AE=EF+BF
理由如下:
在△ACE和△CBF中,
∴△ACE≌△CBF,
∴AE=CF,CE=BF,
∴AE=CF=CE+EF=BF+EF.
科目:初中數(shù)學 來源: 題型:
【題目】某品牌空調原價4000元,因銷售旺季,提價一定的百分率進行銷售,一段時間后,因銷售淡季又降價相同的百分率進行銷售,若淡季空調售價為3960元,求相同的百分率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班學生在頒獎大會上得知該班獲得獎勵的情況如下表:已知該班共有28人獲得獎勵,其中只獲得兩項獎勵的有13人,那么該班獲得獎勵最多的一位同學可能獲得的獎勵為( )
項目 | 三好學生 | 優(yōu)秀學生干部 | 優(yōu)秀團員 |
市級 | 3 | 2 | 3 |
校級 | 18 | 6 | 12 |
A.3項
B.4項
C.5項
D.6項
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張華想用一塊面積為400cm2的正方形紙片,沿著邊的方向剪出一塊面積為300cm2的長方形紙片,使它的長寬之比為3:2.他不知能否裁得出來,正在發(fā)愁.李明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意李明的說法嗎?張華能用這塊紙片裁出符合要求的紙片嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經過點P(﹣3,1),對稱軸是經過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側,PA:PB=1:5,求一次函數(shù)的表達式.
(3)直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,△AOB的頂點均在邊長為1的正方形在頂點上.
(1)求△AOB的面積;
(2)若點B關于y軸的對稱點為C,點A關于x軸的對稱點為D,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+2分別交y軸、x軸于A、B兩點,拋物線y=-+bx+c過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com