【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當陽光與水平線成45°角時,測得鐵塔AB落在斜坡上 的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結果保留根號).

【答案】解:過點C作CE⊥AB于E,過點B作BF⊥CD于F,過點B作BF⊥CD于F,

在Rt△BFD中,
∵∠DBF=30°,sin∠DBF= = ,cos∠DBF= = ,
BD=6,
DF=3,BF=3 ,
AB∥CD,CE⊥AB,BF⊥CD,
四邊形BFCE為矩形,
BF=CE=3 ,CF=BE=CD﹣DF=1,
在Rt△ACE中,∠ACE=45°,
AE=CE=3 ,
AB=3 +1.
答:鐵塔AB的高為(3 +1)m.
【解析】構造直角三角形運用特殊角的銳角函數(shù),過點C作CE⊥AB于E,過點B作BF⊥CD于F,過點B作BF⊥CD于F,因為AB=AE+BE,所以只要求出BE,AE的值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.將△ABC繞直角頂點C逆時針旋轉60°得△A′B′C′,則點B轉過的路徑長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,正六邊形ABCDEF在直角坐標系內(nèi)的位置如圖所示,A(﹣2,0),點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,經(jīng)過2015次翻轉之后,點B的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點E,連接AC交DE于點F,點G為AF的中點,∠ACD=2∠ACB.若DG=3,EC=1,則DE的長為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△A1A2A3 , △A3A4A5 , △A5A6A7 , △A7A8A9 , …,都是等邊三角形,且點A1 , A3 , A5 , A7 , A9的坐標分別為A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依據(jù)圖形所反映的規(guī)律,則A100的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應的任務.

幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形﹣﹣箏形.所謂箏形,它的形狀與我們生活中風箏的骨架相似.
定義:兩組鄰邊分別相等的四邊形,稱之為箏形,如圖,四邊形ABCD是箏形,其中AB=AD,CB=CD
判定:①兩組鄰邊分別相等的四邊形是箏形
②有一條對角線垂直平分另一條對角線的四邊形是箏形
顯然,菱形是特殊的箏形,就一般箏形而言,它與菱形有許多相同點和不同點

如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務:
如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務:
(1)請說出箏形和菱形的相同點和不同點各兩條;
(2)請仿照圖1的畫法,在圖2所示的8×8網(wǎng)格中重新設計一個由四個全等的箏形和四個全等的菱形組成的新圖案,具體要求如下:
①頂點都在格點上;
②所設計的圖案既是軸對稱圖形又是中心對稱圖形;
③將新圖案中的四個箏形都圖上陰影(建議用一系列平行斜線表示陰影).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A在y軸上,點B的坐標為(1,2),將△AOB沿x軸向右平移得到△A′O′B′,點B的對應點B′恰好在函數(shù)y= (x>0)的圖象上,此時點A移動的距離為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B(5,0)兩點,與y軸交于C點,D為拋物線的頂點,E為拋物線上一點,且C、E關于拋物線的對稱軸對稱,分別作直線AE、DE.

(1)求此二次函數(shù)的關系式;
(2)在圖1中,直線DE上有一點Q,使得△QCO≌△QBO,求點Q的坐標;
(3)如圖2,直線DE與x軸交于點F,點M為線段AF上一個動點,有A向F運動,速度為每秒2個單位長度,運動到F處停止,點N由F處出發(fā),沿射線FE方向運動,速度為每秒 個單位長度,M、N兩點同時出發(fā),運動時間為t秒,當M停止時點N同時停止運動坐標平面內(nèi)有一個動點P,t為何值時,以P、M、N、F為頂點的四邊形是特殊的平行四邊形.請直接寫出t值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華站在河岸上的G點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船C的俯角是∠FDC=30°,若小華的眼睛與地面的距離是1.6米,BG=0.7米,BG平行于AC所在的直線,迎水坡i=4:3,坡長AB=8米,點A、B、C、D、F、G在同一平面內(nèi),則此時小船C到岸邊的距離CA的長為 米.(結果保留根號)

查看答案和解析>>

同步練習冊答案