如圖,利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn),作出△ABC關(guān)于原點(diǎn)對(duì)稱的圖形.

解:如圖所示,△A′B′C′即為所求作的△ABC關(guān)于原點(diǎn)對(duì)稱的圖形.

分析:根據(jù)中心對(duì)稱的性質(zhì),在AO的延長線上截取OA′=OA,連接BO并延長,使OB′=OB,連接OC并延長,使OC′=CO,然后順次連接A′、B′、C′即可得解.
點(diǎn)評(píng):本題考查了利用旋轉(zhuǎn)變換作圖,根據(jù)關(guān)于原點(diǎn)成中心對(duì)稱,在平面內(nèi)找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吉林)如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=
1
4
x2于點(diǎn)A、B,交拋物線C2:y=
1
9
x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m 1 2 3
AB
CD
      
     
由上表猜想:對(duì)任意m(m>0)均有
AB
CD
=
2
3
2
3
.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為
2
3
2
3
;
(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為
8
27
8
27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年吉林省高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:047

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1于點(diǎn)A、B,交拋物線C2于點(diǎn)C、D原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD

猜想與證明填表:

由上表猜想:對(duì)任意m(m>0)均有________.請證明你的猜想.

探究與應(yīng)用(1)利用上面的結(jié)論,可得⊿AOB與⊿CQD面積比為________;

(2)當(dāng)⊿AOB和⊿CQD中有一個(gè)是等腰直角三角形時(shí),求⊿CQD與⊿AOB面積之差;

聯(lián)想與拓展如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則⊿MAE與⊿MDF面積的比值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=數(shù)學(xué)公式x2于點(diǎn)A、B,交拋物線C2:y=數(shù)學(xué)公式x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m123
數(shù)學(xué)公式   
  
由上表猜想:對(duì)任意m(m>0)均有數(shù)學(xué)公式=______.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為______;
(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1:y=x2于點(diǎn)A、B,交拋物線C2:y=x2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.
【猜想與證明】
填表:
m123
      
     
由上表猜想:對(duì)任意m(m>0)均有=______.請證明你的猜想.
【探究與應(yīng)用】
(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為______;
(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;
【聯(lián)想與拓展】
如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(吉林卷)數(shù)學(xué)(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)P(0,m2)(m>0)在y軸正半軸上,過點(diǎn)P作平行于x軸的直線,分別交拋物線C1于點(diǎn)A、B,交拋物線C2于點(diǎn)C、D.原點(diǎn)O關(guān)于直線AB的對(duì)稱點(diǎn)為點(diǎn)Q,分別連接OA,OB,QC和QD.

【猜想與證明】

填表:

m

1

2

3

 

 

 

由上表猜想:對(duì)任意m(m>0)均有=    .請證明你的猜想.

【探究與應(yīng)用】

(1)利用上面的結(jié)論,可得△AOB與△CQD面積比為    

(2)當(dāng)△AOB和△CQD中有一個(gè)是等腰直角三角形時(shí),求△CQD與△AOB面積之差;

【聯(lián)想與拓展】

如圖②過點(diǎn)A作y軸的平行線交拋物線C2于點(diǎn)E,過點(diǎn)D作y軸的平行線交拋物線C1于點(diǎn)F.在y軸上任取一點(diǎn)M,連接MA、ME、MD和MF,則△MAE與△MDF面積的比值為    

 

 

查看答案和解析>>

同步練習(xí)冊答案