精英家教網 > 初中數學 > 題目詳情

已知y1成正比,y2與x2成反比,且y=y1+y2.當x=1時,y=-15;當x=4時,y=1,求y與x之間的函數關系式.

答案:
解析:

y=


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知y=y1+y2,y1與x-1成正比,y2與x成正比,當x=2時,y=4,當x=-1,y=-5,求y與x的函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鹽城)知識遷移
   當a>0且x>0時,因為(
x
-
a
x
)
2
≥0
,所以x-2
a
+
a
x
≥0,從而x+
a
x
2
a
(當x=
a
)是取等號).
   記函數y=x+
a
x
(a>0,x>0).由上述結論可知:當x=
a
時,該函數有最小值為2
a

直接應用
   已知函數y1=x(x>0)與函數y2=
1
x
(x>0),則當x=
1
1
時,y1+y2取得最小值為
2
2

變形應用
   已知函數y1=x+1(x>-1)與函數y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得該最小值時相應的x的值.
實際應用
   已知某汽車的一次運輸成本包含以下三個部分,一是固定費用,共360元;二是燃油費,每千米1.6元;三是折舊費,它與路程的平方成正比,比例系數為0.001.設該汽車一次運輸的路程為x千米,求當x為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知y=y1-y2,y1與x2成正比,y2與x+2成反比,當x=1時,y=3;當x=-1時,y=7;
(1)求y與x之間的函數關系式;
(2)當x=2時,求y的值.

查看答案和解析>>

科目:初中數學 來源:2012年江蘇省鹽城市中考數學試卷(解析版) 題型:解答題

知識遷移
   當a>0且x>0時,因為,所以x-+≥0,從而x+(當x=)是取等號).
   記函數y=x+(a>0,x>0).由上述結論可知:當x=時,該函數有最小值為2
直接應用
   已知函數y1=x(x>0)與函數y2=(x>0),則當x=______時,y1+y2取得最小值為______.
變形應用
   已知函數y1=x+1(x>-1)與函數y2=(x+1)2+4(x>-1),求的最小值,并指出取得該最小值時相應的x的值.
實際應用
   已知某汽車的一次運輸成本包含以下三個部分,一是固定費用,共360元;二是燃油費,每千米1.6元;三是折舊費,它與路程的平方成正比,比例系數為0.001.設該汽車一次運輸的路程為x千米,求當x為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?

查看答案和解析>>

同步練習冊答案