精英家教網 > 初中數學 > 題目詳情

【題目】在去年的創(chuàng)建全國文明城市活動中,抱著我為文明瑞安出一份力的想法,小華就公眾對在餐廳吸煙的態(tài)度進行了隨機抽樣調查,主要有四種態(tài)度:A、顧客出面制止;B、勸說進吸煙室;C、餐廳老板出面制止;D、無所謂.他將調查結果繪制了兩幅不完整的統(tǒng)計圖.請你根據圖中的信息回答下列問題:

(1)這次抽樣的公眾有__________人;

(2)請將統(tǒng)計圖①補充完整;

(3)在統(tǒng)計圖②中,“無所謂”部分所對應的圓心角是多少度?

(4)若瑞安全市人口有120萬人,估計贊成“餐廳老板出面制止”的有多少萬人?

【答案】(1)200 (2)(圖略); (3);(436萬.

【解析】

1)根據題意可得:A類的有20人,占10%;即可求得總人數;

2)進而可求得C類的人數,據此可補全條形圖;

3)根據扇形圖中,每部分占總體的百分比等于該部分所對應的扇形圓心角的度數與360°的比,可求得,無所謂部分所對應的圓心角度數;

4)用樣本估計總體,可估計贊成的人數.

(1)A類的有20人,占10%,

∴故總人數為20÷10%=200人;

(2)(1)的結論可求得C類的人數為2002010110=60人,條形統(tǒng)計圖如圖所示;

(3)“無所謂部分有10人,占總人數的,所對應的圓心角度數為×360°=18°;

(4)由條形圖可得:C類的人數為60人,占總數的,則城區(qū)人口有120萬人,估計贊成餐廳老板出面制止的有120×=36

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象與x軸交于A、B兩點(AB的左側),與y軸交于點C,頂點為D.

1)畫出該二次函數的圖象;

2)連接AC、CD、BD,求ABCD的面積

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知長方形硬紙板ABCD的長BC為40cm,寬CD為30cm,按如圖所示剪掉2個小正方形和2個小長方形(即圖中陰影部分),將剩余部分折成一個有蓋的長方體盒子,

設剪掉的小正方形邊長為xcm.(紙板的厚度忽略不計)

(1)填空:EF= .cm,GH= .cm;(用含x的代數式表示)

(2)若折成的長方體盒子的表面積為950cm2,求該長方體盒子的體積

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以邊長為20cm的正三角形紙板的各頂點為端點,在各邊上分別截取4cm長的六條線段,過截得的六個端點作所在邊的垂線,形成三個有兩個直角的四邊形。把它們沿圖中虛線剪掉,用剩下的紙板折成一個底為正三角形的無蓋柱形盒子,則它的容積為多少cm

A. 124B. 144C. 110D. 94

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖,在矩形ABCD中,AB=6cm,BC=8cm,對角線AC,BD交于點0.點P從點A出發(fā),沿AD方向向終點D勻速運動,速度為cm/s;同時,點Q從點D出發(fā),沿DC方向向終點C勻速運動,速度為1cm/s;當一個點停止運動時,另一個點也停止運動.連接PO并延長,交BC于點E,過點QQF//AC,交BD于點F.設運動時間為ts),解答下列問題:

1)當t為何值時,△AOP是等腰三角形?

2)設五邊形OECQF的面積為Scm2),試確定St的函數關系式;

3)在運動過程中,是否存在某一時刻t,使S五邊形S五邊形OECQFSACD=916?若存在,求出t的值;若不存在,請說明理由;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,BC=6,AC=8.點E與點BAC的同側,且AEAC

1)如圖1,點E不與點A重合,連結CEAB于點P.設AE=x,AP=y,求y關于x的函數解析式;

2)是否存在點E,使△PAE與△ABC相似,若存在,求AE的長;若不存在,說明理由;

3)如圖2,過點BBDAE,垂足為D.將以點E為圓心,ED為半徑的圓記為⊙E.若點C到⊙E上點的距離的最小值為8,求⊙E的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共1000萬元,如果平均每月增長率為,則由題意列方程應為____________________________ 。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=8,點E,F分別為邊AD,BC上的一個動點,連接EF,以EF為對稱軸折疊四邊形CDEF,得到四邊形MNFE,點D,C的對應點分別為MN,當點N恰好落在AB的三等分點時,CF的長為___

查看答案和解析>>

同步練習冊答案