【題目】如圖所示,在中,,,,點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間是秒().過點(diǎn)作于點(diǎn),連接.
(1)求證:四邊形是平行四邊形;
(2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值;如果不能,請(qǐng)說明理由;
(3)當(dāng)為何值時(shí),為直角三角形?請(qǐng)說明理由.
【答案】(1)證明見詳解(2)當(dāng)時(shí),四邊形能夠成為菱形;理由見詳解(3)當(dāng)或時(shí),為直角三角形;理由見詳解
【解析】
(1)根據(jù)時(shí)間和速度表示出,,再利用角所對(duì)的直角邊等于斜邊的一半求得,則可得,然后根據(jù)平行線的判定得到,即可得證結(jié)論;
(2)由(1)的結(jié)論可得四邊形是平行四邊形,若為菱形,則必有鄰邊相等,則,列出關(guān)于的方程求解即可;
(3)當(dāng)為直角三角形時(shí),分三種情況分別找等量關(guān)系列方程求解即可.
解:(1)根據(jù)題意得:,
∵
∴
∵,
∴
∴
∴
∵
∴
∴四邊形是平行四邊形;
(2)結(jié)論:四邊形能夠成為菱形
理由:由(1)可知四邊形是平行四邊形
若為菱形,則,如圖:
∵,
∴
∵
∴
∴
∴當(dāng)時(shí),四邊形能夠成為菱形;
(3)①當(dāng)時(shí),如圖:
∵,
∴四邊形為矩形
∴
∵由(1)可知四邊形是平行四邊形
∴
∵由(1)可知,,
∴
∴
∴
∴;
②當(dāng)時(shí),如圖:
∵由(1)可知四邊形是平行四邊形
∴
∴
∵在中,
∴
∵
∴
∵,,
∴
∴;
③當(dāng)時(shí),不成立;
∴綜上所述,當(dāng)或時(shí),為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCO的頂點(diǎn)A、C分別在直線x=2和x=7上,O是坐標(biāo)原點(diǎn),則對(duì)角線OB長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)口袋中裝有3個(gè)白球、5個(gè)紅球,這些球除了顏色外完全相同,充分搖勻后隨機(jī)摸出一球,
(1)求摸出白球概率是多少?
(2)在第一次摸出白球后,如果將這個(gè)白球放回,再摸出一球,求兩次摸出的都是白球的概率是多少?(用樹狀圖或列表分析)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CB,AD=CD,對(duì)角線AC,BD相交于點(diǎn)O,OE⊥AB,OF⊥CB,垂足分別是E、F.求證:OE=OF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用長(zhǎng)為6m的鋁合金條制成“日”字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計(jì)).
(1)求出y與x的函數(shù)關(guān)系式;
(2)如何安排窗框的長(zhǎng)和寬,才能使得窗戶的透光面積最大?并求出此時(shí)的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.
(1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1;
(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)A是雙曲線在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為一邊作等邊三角形ABC,點(diǎn)C在第四象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在△ABC中,∠C=90°,∠BAC的平分線與外角∠CBE的平分線相交于點(diǎn)D,求∠D的度數(shù).
(2)如圖②,將(1)中的條件“”改為,其它條件不變,請(qǐng)直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com