【題目】隨著科技的發(fā)展,油電混合動力汽車已經(jīng)開始普及,某種型號油電混合動力汽車,從甲地到乙地燃油行駛純?nèi)加唾M用80元,從甲地到乙地用電行駛純電費用30元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元
(1)求每行駛1千米純用電的費用;
(2)若要使從甲地到乙地油電混合行駛所需的油、電費用合計不超過50元,則至多用純?nèi)加托旭偠嗌偾祝?/span>
【答案】(1)每行駛1千米純用電的費用為0.3元;(2)至多用純?nèi)加托旭?/span>40千米.
【解析】
(1)根據(jù)某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元,可以列出相應(yīng)的分式方程,然后解分式方程即可解答本題;
(2)根據(jù)從甲地到乙地油電混合行駛所需的油、電費用合計不超過50元,結(jié)合(1)中用電每千米的費用列出不等式,解不等式即可解答本題.
解:(1)設(shè)每行駛1千米純用電的費用為x元,
根據(jù)題意,得,
解得,x=0.3,
經(jīng)檢驗,x=0.3是原分式方程的解,
即每行駛1千米純用電的費用為0.3元;
(2)從甲地到乙地油電混合行駛,設(shè)用純?nèi)加托旭?/span>y千米.
根據(jù)題意,得,
解得,y≤40.
即至多用純?nèi)加托旭?/span>40千米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉(zhuǎn)一周.若△DCE其中一邊與AB平行,則∠ECB的度數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在地時距地面的高度為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式.
(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】酒泉市教育局計劃對全市八年級學(xué)生學(xué)習(xí)情況進行調(diào)查,隨機從全市抽取城市和農(nóng)村兩組學(xué)生的期中數(shù)學(xué)成績,每組10人進行對比分析.繪制統(tǒng)計圖如下.根據(jù)圖中信息,完成下列問題.
(1)完成下表;
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
城市 | ||||
農(nóng)村 |
(2)依據(jù)上表的信息談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天津北寧公園內(nèi)的致遠塔,塔高九層,塔內(nèi)四周墻壁上鑲鉗著歷史題材為內(nèi)容的瓷板油彩畫或青石刻浮雕,疊雙向盤旋樓梯或電梯可達九層,津門美景盡收眼底,是我國目前最高的寶塔.某校數(shù)學(xué)情趣小組實地測量了致遠塔的高度,如圖,在處測得塔尖的仰角為,再沿方向前進到達處,測得塔尖的仰角為,求塔高(精確到,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦AD平分∠BAC,DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)若AD=BC,⊙O半徑為6,求∠CAD與圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點F.
(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;
(2)如圖2,將△ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當(dāng)DE∥AM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( 。
A. 當(dāng)m=﹣3時,函數(shù)圖象的頂點坐標(biāo)是(,)
B. 當(dāng)m>0時,函數(shù)圖象截x軸所得的線段長度大于
C. 當(dāng)m≠0時,函數(shù)圖象經(jīng)過同一個點
D. 當(dāng)m<0時,函數(shù)在x>時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2交x軸于點A,交y軸于點B,過點A的拋物線y=ax2+bx﹣2與y軸交點C,與直線AB的另一個交點為D,點E是線段AD上一點,點F在拋物線上,EF∥y軸,設(shè)E的橫坐標(biāo)為m
(1)用含a的代數(shù)式表示b.
(2)當(dāng)點D的橫坐標(biāo)為8時,求出a的值.
(3)在(2)的條件下,設(shè)△ABF的面積為S,求出S最大值,并求出此時m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com