如圖,正方形ABCD的對(duì)角線AC與BD相交于點(diǎn)M,正方形MNPQ與正方形ABCD全等,射線MN與MQ不過(guò)A、B、C、D四點(diǎn)且分別交ABCD的邊于E、F兩點(diǎn),
(1)求證:ME=MF;
(2)若將原題中的正方形改為矩形,且BC=2AB=4,其他條件不變,探索線段ME與線段MF的數(shù)量關(guān)系.

【答案】分析:(1)求簡(jiǎn)單的線段相等,可證線段所在的三角形全等;故M分別作MG⊥BC于G,MH⊥CD于H,易得MG=MH,而∠EMG、∠FMH都是∠GMF的余角,由此可證得∠EMG=∠FMH,即可證得△MGE≌△MHF,由此得證.
(2)此題要分四種情況討論:
①當(dāng)MN交BC于點(diǎn)E,MQ交CD于點(diǎn)F時(shí);此種情況與(1)類似,不同的是(1)題用到的是全等,而此題運(yùn)用的是相似,過(guò)點(diǎn)M作MG⊥BC于點(diǎn)G,MH⊥CD于點(diǎn)H,通過(guò)證△MGE∽△MHF,得到關(guān)于ME、MF、MG、MH的比例關(guān)系式,聯(lián)立矩形的性質(zhì)及BC、AB的比例關(guān)系,即可求得ME、MF的比例關(guān)系;
②當(dāng)MN的延長(zhǎng)線交AB于點(diǎn)E,MQ交BC于點(diǎn)F時(shí).解法同①;
③當(dāng)MN、MQ兩邊都交邊BC于E、F時(shí),過(guò)M作MH⊥BC于H,由于M是AC的中點(diǎn),且已知AB的長(zhǎng),即可求得MH=1,在Rt△EMF中,MH⊥EF,易證得△MEH∽△FEM,△FMH∽△FEM.可得,.將MH=1代入上述兩式,然后聯(lián)立勾股定理即可得到ME、MF的關(guān)系式;
④當(dāng)MN交BC邊于E點(diǎn),MQ交AD于點(diǎn)F時(shí).可延長(zhǎng)EM交BC于G,易證得△MED≌△MGB,即可得ME=MG,那么這種情況下與③完全相同,即可得解.
解答:(1)證明:過(guò)點(diǎn)M作MG⊥BC于點(diǎn)G,MH⊥CD于點(diǎn)H.
∴∠MGE=∠MHF=90°.
∵M(jìn)為正方形對(duì)角線AC、BD的交點(diǎn),∴MG=MH.
又∵∠1+∠GMQ=∠2+∠GMQ=90°,
∴∠1=∠2.
在△MGE和△MHF中
∠1=∠2,
MG=MH,
∠MGE=∠MHF.
∴△MGE≌△MHF.
∴ME=MF.(3分)

(2)解:①當(dāng)MN交BC于點(diǎn)E,MQ交CD于點(diǎn)F時(shí).
過(guò)點(diǎn)M作MG⊥BC于點(diǎn)G,MH⊥CD于點(diǎn)H.
∴∠MGE=∠MHF=90°.
∵M(jìn)為矩形對(duì)角線AC、BD的交點(diǎn),
∴∠1+∠GMQ=∠2+∠GMQ=90°.
∴∠1=∠2.
在△MGE和△MHF中,
∠1=∠2
∠MGE=∠MHF
∴△MGE∽△MHF.

∵M(jìn)為矩形對(duì)角線AB、AC的交點(diǎn),∴MB=MD=MC
又∵M(jìn)G⊥BC,MH⊥CD,∴點(diǎn)G、H分別是BC、DC的中點(diǎn).
∵BC=2AB=4,

.(4分)
②當(dāng)MN的延長(zhǎng)線交AB于點(diǎn)E,MQ交BC于點(diǎn)F時(shí).
過(guò)點(diǎn)M作MG⊥AB于點(diǎn)G,MH⊥BC于點(diǎn)H.
∴∠MGE=∠MHF=90°.
∵M(jìn)為矩形對(duì)角線AC、BD的交點(diǎn),
∴∠1+∠GMQ=∠2+∠GMQ=90°.
∴∠1=∠2.
在△MGE和△MHF中,
∠1=∠2,
∠MGE=∠MHF.
∴△MGE∽△MHF.

∵M(jìn)為矩形對(duì)角線AC、BD的交點(diǎn),
∴MB=MA=MC.
又∵M(jìn)G⊥AB,MH⊥BC,∴點(diǎn)G、H分別是AB、BC的中點(diǎn).
∵BC=2AB=4,∴
.(5分)
③當(dāng)MN、MQ兩邊都交邊BC于E、F時(shí).
過(guò)點(diǎn)M作MH⊥BC于點(diǎn)H.
∴∠MHE=∠MHF=∠NMQ=90°.
∴∠1=∠3,∠2=∠4.
∴△MEH∽△FEM,△FMH∽△FEM.

∵M(jìn)為矩形對(duì)角線AC、BD的交點(diǎn),
∴點(diǎn)M為AC的中點(diǎn).
又∵M(jìn)H⊥BC,
∴點(diǎn)M、H分別是AC、BC的中點(diǎn).
∵BC=2AB=4,
∴AB=2.
∴MH=1.

.(6分)
④當(dāng)MN交BC邊于E點(diǎn),MQ交AD于點(diǎn)F時(shí).
延長(zhǎng)FM交BC于點(diǎn)G.
易證△MFD≌△MGB.∴MF=MG.
同理由③得
.(7分)
綜上所述:ME與MF的數(shù)量關(guān)系是
點(diǎn)評(píng):此題考查了正方形、矩形的性質(zhì),全等三角形、相似三角形的判定和性質(zhì)以及勾股定理等知識(shí)的綜合應(yīng)用;由于(2)題的情況較多,做到不漏解是此題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案