(11·曲靖)(10分)如圖,點A、B、C、D都在⊙O上,OC⊥AB,∠ADC=30°。
(1)求∠BOC的度數(shù);
(2)求證:四邊形AOBC是菱形。
解:(1)∵點A、B、C、D都在⊙O上,OC⊥AB,

∵∠ADC=30°,
∴∠AOC=∠BOC=2∠ADC=60°,
∴∠BOC的度數(shù)為60°;
,
∴AC=BC,
AO=BO,
∵∠BOC的度數(shù)為60°,
∴△BOC為等邊三角形,
∴BC=BO=CO,
∴AO=BO=AC=BC,
四邊形AOBC是菱形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

已知半徑分別是3和5的兩個圓沒有公共點,那么這兩個圓的圓心距d的取值范圍是(  )
A. B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,內接于,若,則的大小為         (    )
A.B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011年青海,25,7分)已知:如圖8,AB是⊙O的直徑,AC是弦,直線EF是過點C的⊙O的切線,AD⊥EF于點D.
(1)求證:∠BAC=∠CAD

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2011•溫州)已知線段AB=7cm,現(xiàn)以點A為圓心,2cm為半徑畫⊙A;再以點B為圓心,3cm為半徑畫⊙B,則⊙A和⊙B的位置關系( 。
A.內含B.相交
C.外切D.外離

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·永州)(本題滿分10分)如圖,AB是半圓O的直徑,點C是⊙O上一點
(不與A,B重合),連接AC,BC,過點O作OD∥AC交BC于點D,在OD的延長線上
取一點E,連接EB,使∠OEB=∠ABC.
⑴ 求證:BE是⊙O的切線;
⑵ 若OA=10,BC=16,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·丹東)(本題10分)已知:如圖,在中,,以AC為直徑作⊙O交AB于點D.
(1)若,求線段BD的長.
(2)若點E為線段BC的中點,連接DE.      求證:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)已知AB為⊙O直徑,以OA為直徑作⊙M。過B作⊙M得切線BC,切點為C,交⊙O于E。
(1)在圖中過點B作⊙M作另一條切線BD,切點為點D(用尺規(guī)作圖,保留作圖痕跡,不寫作法,不用證明);
(2)證明:∠EAC=∠OCB;
(3)若AB=4,在圖2中過O作OP⊥AB交⊙O于P,交⊙M的切線BD于N,求BN的值。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011?德州)母線長為2,底面圓的半徑為1的圓錐的側面積為  

查看答案和解析>>

同步練習冊答案