【題目】如圖1,△ABC為等腰三角形,AB=AC=a,P點是底邊BC上的一個動點,PD∥AC,PE∥AB.
⑴用a表示四邊形ADPE的周長為 ;
⑵點P運動到什么位置時,四邊形ADPE是菱形,請說明理由;
⑶如果△ABC不是等腰三角形(圖2),其他條件不變,點P運動到什么位置時,四邊形ADPE是菱形(不必說明理由).
【答案】⑴2a;⑵見解析;(3)見解析.
【解析】
(1)由題意可得四邊形ADPE為平行四邊形,由平行線的性質(zhì)和等腰三角形的性質(zhì)可得DB=DP,即可求四邊形ADPE的周長;
(2)當P為BC中點時,四邊形ADPE是菱形,由等腰三角形的性質(zhì)和平行線的性質(zhì)可得AE=EP,則平行四邊形ADPE是菱形;
(3)P運動到∠A的平分線上時,四邊形ADPE是菱形,首先證明四邊形ADPE是平行四邊形,再根據(jù)平行線的性質(zhì)可得∠1=∠3,從而可證出∠2=∠3,進而可得AE=EP,然后可得四邊形ADPE是菱形.
解:⑴∵PD∥AC,PE∥AB,
∴四邊形ADPE為平行四邊形,
∴AD=PE,DP=AE,
∵AB=AC,
∴∠B=∠C,
∵DP∥AC,
∴∠B=∠DPB,
∴DB=DP,
∴四邊形ADPE的周長=2(AD+DP)=2(AD+BD)=2AB=2a;
故答案為:2a;
⑵當P為BC中點時,四邊形ADPE是菱形.
理由如下:連結(jié)AP,
∵PD∥AC,PE∥AB,
∴四邊形ADPE為平行四邊形,
∵AB=AC,P為BC中點,
∴∠PAD=∠PAE,
∵PE∥AB,
∴∠PAD=∠APE,
∴∠PAE=∠APE,
∴EA=EP,
∴四邊形ADPE是菱形;
⑶P運動到∠A的平分線上時,四邊形ADPE是菱形,
∵PD∥AC,PE∥AB,
∴四邊形ADPE是平行四邊形,
∵AP平分∠BAC,
∴∠1=∠2,
∵AB∥EP,
∴∠1=∠3,
∴∠2=∠3,
∴AE=EP,
∴四邊形ADPE是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為矩形ABCD邊AD上一點,以O為圓心,OA為半徑畫圓與CD交于點E,過點E作⊙O的切線EF交AB于F,點C關于EF的對稱點G恰好落在⊙O上,若AD=4,AB=6,則OA的長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場在促銷活動中規(guī)定,顧客每消費100元就能獲得一次抽獎機會.為了活躍氣氛,設計了兩個抽獎方案:
方案一:轉(zhuǎn)動轉(zhuǎn)盤A一次,轉(zhuǎn)出紅色可領取一份獎品;
方案二:轉(zhuǎn)動轉(zhuǎn)盤B兩次,兩次都轉(zhuǎn)出紅色可領取一份獎品.(兩個轉(zhuǎn)盤都被平均分成3份)如果你獲得一次抽獎機會,你會選擇哪個方案?請用相關的數(shù)學知識說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt中,,點為邊上一個動點,過點作交邊于,過點作射線交邊于點,交射線于點,聯(lián)結(jié).設兩點的距離為,兩點的距離為.
(1)求證:;
(2)求關于的函數(shù)解析式,并寫出的取值范圍;
(3)點在運動過程中,能否構(gòu)成等腰三角形?如果能,請直接寫出的長,如果不能,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l:y=kx+4與拋物線y=x2交于點A(x1,y1),B(x2,y2).
(1)求:;的值.
(2)過點(0,-4)作直線PQ∥x軸,且過點A、B分別作AM⊥PQ于點M,BN⊥PQ于點N,設直線l:y=kx+4交y軸于點F.求證:AF=AM=4+y1.
(3)證明:+為定值,并求出該值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=﹣5x+5與x軸,y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸的另一交點為B.
(1)求拋物線解析式及B點坐標;
(2)若點M為x軸下方拋物線上一動點,連接MA、MB、BC,當點M運動到某一位置時,四邊形AMBC面積最大,求此時點M的坐標及四邊形AMBC的面積;
(3)如圖2,若P點是半徑為2的⊙B上一動點,連接PC、PA,當點P運動到某一位置時,PC+PA的值最小,請求出這個最小值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com