已知點(diǎn)P是邊長(zhǎng)為4的正方形ABCD的AD邊上一點(diǎn),AP=1,BE⊥PC于E,則BE=
 
分析:在Rt△PDC中,由勾股定理可求出PC的長(zhǎng),由于四邊形ABCD是正方形且BE⊥PC于E,可證出△BEC∽△CDP,所以
BE
CD
=
BC
PC
,分別將BC、CD、PC的值代入即可求出BE的長(zhǎng).
解答:精英家教網(wǎng)解:如下圖所示:PD=AD-AP=4-1=3
在Rt△PDC中,PD=AD-AP=4-1=3,DC=4,
由勾股定理可得:PC2=PD2+DC2
即:PC=
PD2+DC2
=
32+42
=5,
∵∠BCE+∠CBE=90°,∠BCE+∠DCP=90°
∴∠CBE=∠DCP,
又∵∠BEC=∠D=90°,
∴△BEC∽△CDP,
BE
CD
=
BC
PC
,
∴BE=
BC
PC
×CD=
4
5
×4=
16
5
點(diǎn)評(píng):本題主要考查了運(yùn)用勾股定理的能力,用到的知識(shí)點(diǎn)有相似三角形的判定及性質(zhì),此題屬于?碱愋皖}.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)P是邊長(zhǎng)為4的正方形ABCD內(nèi)一點(diǎn),且PB=3,BF⊥BP,垂足是B.請(qǐng)?jiān)谏渚BF上找一點(diǎn)M,使以點(diǎn)B精英家教網(wǎng)、M、C為頂點(diǎn)的三角形與△ABP相似.(請(qǐng)注意:全等圖形是相似圖形的特例)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖一,已知點(diǎn)P是邊長(zhǎng)為a的等邊△ABC內(nèi)任意一點(diǎn),點(diǎn)P到三邊的距離PD、PE、PF的長(zhǎng)分別記為h1,h2,h3,則h1,h2,h3之間有什么關(guān)系呢?
分析:連接PA、PB、PC,則△ABC被分割成三個(gè)三角形,根據(jù):
S△PAB+S△PBC+S△PAC=S△ABC,即:
1
2
ah1+
1
2
ah2+
1
2
ah3=
3
4
a2
,可得h1+h2+h3=
3
2
a

問題1:若點(diǎn)P是邊長(zhǎng)為a的等邊△ABC外一點(diǎn)(如圖二所示位置),點(diǎn)P到三邊的距離PD、PE、PF的長(zhǎng)分別記為h1,h2,h3.探索h1,h2,h3之間有什么關(guān)系呢?并證明你的結(jié)論;
問題2:如圖三,正方形ABCD的邊長(zhǎng)為a,點(diǎn)P是BC邊上任意一點(diǎn)(可與B、C重合),B、C、D三點(diǎn)到射線AP的距離分別是h1,h2,h3,設(shè)h1+h2+h3=y,線段AP=x,求y與x的函數(shù)關(guān)系式,并求y的最大值與最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)P是邊長(zhǎng)為4的正方形ABCD內(nèi)的一點(diǎn),且PB=3,BF⊥BP,若在射線BF有一點(diǎn)M,使以點(diǎn)B,M,C為頂點(diǎn)的三角形與△ABP相似,那么BM=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)O是邊長(zhǎng)為2的正方形ABCD的中心,動(dòng)點(diǎn)E、F分別在邊AB、AD上移動(dòng)(含端點(diǎn)).
(1)如圖1,若∠EOF=90°,試證:OE=OF;
(2)如圖2,當(dāng)∠EOF=45°時(shí),設(shè)BE=x,DF=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)在滿足(2)的條件時(shí),試探究直線EF與正方形ABCD的內(nèi)切圓O的位置關(guān)系,并證明你的結(jié)論.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,已知點(diǎn)P是邊長(zhǎng)為4的正方形ABCD內(nèi)一點(diǎn),且PB=3,BF⊥BP,垂足是B.
(1)利用尺規(guī)作圖,試在射線BF上找一點(diǎn)M,使得△ABP≌△CBM.
(2)求證:△ABP≌△CBM.

查看答案和解析>>

同步練習(xí)冊(cè)答案