在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE,過A作AE的垂線交ED于點(diǎn)P,若AE=AP=1,PB=,下列結(jié)論:
①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③S正方形ABCD=4+; 
其中正確的是( )

A.①②③
B.只有①③
C.只有①
D.只有③
【答案】分析:首先利用已知條件根據(jù)邊角邊可以證明△APD≌△AEB,故選項(xiàng)①正確;由①可得∠BEP=90°,故BE不垂直于AE過點(diǎn)B作BM⊥AE延長線于M,由①得∠AEB=135°所以∠EMB=45°,所以△EMB是等腰Rt△,求出B到直線AE距離為BF,即可對于②作出判斷;根據(jù)三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可對③判定.
解答:解:∵四邊形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∴∠BAP+∠PAD=90°,
∵EA⊥AP,
∴∠EAB+∠BAP=90°,
∴∠PAD=∠EAB,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS),故①正確;
∵△AEP為等腰直角三角形,
∴∠AEP=∠APE=45°,
∴∠APD=∠AEB=135°,
∴∠BEP=90°,
過B作BF⊥AE,交AE的延長線于F,則BF的長是點(diǎn)B到直線AE的距離,
在△AEP中,AE=AP=1,根據(jù)勾股定理得:PE=,
在△BEP中,PB=,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=
故②是錯誤的;
由△APD≌△AEB,
∴PD=BE=,
∵S△BPD=PD×BE=,
∴S△ABD=S△APD+S△APB+S△BPD=2+,
∴S正方形ABCD=2S△ABD=4+.故選項(xiàng)③正確,
則正確的序號有:①③.
故選B.
點(diǎn)評:此題分別考查了正方形的性質(zhì)、全等三角形的性質(zhì)與判定、三角形的面積及勾股定理,綜合性比較強(qiáng),解題時(shí)要求熟練掌握相關(guān)的基礎(chǔ)知識才能很好解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,EB=
5

(1)求證:△APD≌△AEB;
(2)探究EB與ED的位置關(guān)系,并說明理由;
(3)求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE,過A作AE的垂線交ED于點(diǎn)P,若AE=AP=1,PB=
5
,下列結(jié)論:
①△APD≌△AEB;②點(diǎn)B到直線AE的距離為
2
;③S正方形ABCD=4+
6
; 
其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河南模擬)如圖,在正方形ABCD外取一點(diǎn)E,連接AE,BE,DE.過點(diǎn)A作AE的垂線交ED于點(diǎn)P.若AE=AP=1,PB=
5
.則正方形ABCD的面積為
4+
6
4+
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
6
.下列結(jié)論:
①△APD≌△AEB﹔②點(diǎn)B到直線AE的距離為
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正確結(jié)論的序號是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們知道,正方形的四條邊相等,四個(gè)角也都等于90°.如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
5
;下列結(jié)論:
①△APD≌△AEB;②EB⊥ED;③點(diǎn)B到直線AE的距離為
2
;④S△APD+S△APB=
1+
6
2

其中正確結(jié)論的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案