【題目】如圖, 的周長為36,對角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,求△DOE的周長.
【答案】△DOE的周長為15.
【解析】試題分析:根據(jù)平行四邊形的對邊相等和對角線互相平分可得,OB=OD,又因?yàn)?/span>E點(diǎn)是CD的中點(diǎn),可得OE是△BCD的中位線,可得OE=BC,所以易求△DOE的周長.
試題解析:∵平行四邊形ABCD的周長為36,
∴2(BC+CD)=36,則BC+CD=18.
∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點(diǎn)O,BD=12,
∴OD=OB=BD=6.
又∵點(diǎn)E是CD的中點(diǎn),
∴OE是△BCD的中位線,DE=CD,
∴OE=BC,
∴△DOE的周長=OD+OE+DE=BD+(BC+CD)=6+9=15,
即△DOE的周長為15.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、D、C、F在一條直線上,且BD=FC,AB=EF.
(1)請你只添加一個條件(不再加輔助線),使△ABC≌△EFD,你添加的條件是 ;
(2)添加了條件后,證明△ABC≌△EFD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,過點(diǎn)A作AG∥DB,交CB的延長線于點(diǎn)G,∠G=90°.
求證:四邊形DEBF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),以P(1,1)為圓心的⊙P與x軸、y軸分別相切于點(diǎn)M和點(diǎn)N,點(diǎn)F從點(diǎn)M出發(fā),沿x軸正方向以每秒1個單位長度的速度運(yùn)動,連接PF,過點(diǎn)P作PE⊥PF交y軸于點(diǎn)E,設(shè)點(diǎn)F運(yùn)動的時間是t秒(t>0)
(1)若點(diǎn)E在y軸的負(fù)半軸上(如圖所示),求證:PE=PF;
(2)在點(diǎn)F運(yùn)動過程中,設(shè)OE=a,OF=b,試用含a的代數(shù)式表示b;
(3)作點(diǎn)F關(guān)于點(diǎn)M的對稱點(diǎn)F′,經(jīng)過M、E和F′三點(diǎn)的拋物線的對稱軸交x軸于點(diǎn)Q,連接QE.在點(diǎn)F運(yùn)動過程中,是否存在某一時刻,使得以點(diǎn)Q、O、E為頂點(diǎn)的三角形與以點(diǎn)P、M、F為頂點(diǎn)的三角形相似?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x、y的二元一次方程組 的解滿足x﹣y>﹣8.
(1)用含m的代數(shù)式表示x﹣y.
(2)求滿足條件的m的所有正整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三個實(shí)數(shù)a、b、c滿足a+b+c=0,a﹣b+c=0,則下列結(jié)論一定成立的是( )
A.a+b≥0B.a+c>0C.b+c≥0D.b2﹣4ac≥0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com