【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線,求∠A和∠CDB的度數(shù).
【答案】∠A= 40°;∠CDB=80°.
【解析】試題分析:先根據(jù)已知條件∠A:∠B:∠C=2:3:4,可知把三角形內(nèi)角和總共看成了9份,其中∠A,∠B,∠ACB分別占2份,3份,4份,然后根據(jù)三角形內(nèi)角和等于180°,按比例分配方法可進(jìn)行求解∠A,∠B,∠ACB,然后根據(jù)角平分線的定義可得∠ACD,再根據(jù)三角形外角性質(zhì)計(jì)算出∠CDB.
試題解析:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°,
∴ ∠A=×180°=40°,∠ACB=×180°=80°,
∵ CD是∠ACB平分線,
∴∠ACD= ∠ACB=40°,
∴∠CDB=∠A+∠ACD=40°+40°=80°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 的周長(zhǎng)為36,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,求△DOE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)四邊形截去一個(gè)角后,它不可能是( )
A. 六邊形 B. 五邊形 C. 四邊形 D. 三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,線段A′B′是由線段AB經(jīng)過(guò)平移得到的,已知點(diǎn)A(﹣2,1)的對(duì)應(yīng)點(diǎn)為A′(3,﹣1),點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′(4,0),則點(diǎn)B的坐標(biāo)為( )
A.(9,﹣2)
B.(﹣1,﹣2)
C.(9,2)
D.(﹣1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BOC=9°,點(diǎn)A在OB上,且OA=1,按下列要求畫(huà)圖:
以A為圓心,1為半徑向右畫(huà)弧交OC于點(diǎn)A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫(huà)弧交OB于點(diǎn)A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫(huà)弧交OC于點(diǎn)A3,得第3條線段A2A3;…這樣畫(huà)下去,直到得第n條線段,之后就不能再畫(huà)出符合要求的線段了,則n=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,⊙O的內(nèi)接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延長(zhǎng)線于D點(diǎn),OC交AB于E點(diǎn).
(1)求∠D的度數(shù);
(2)求證:AC2=ADCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A的坐標(biāo)為(3,-2),則點(diǎn)A向右平移3個(gè)單位后的坐標(biāo)為( )
A. (0,-2) B. (6,-2) C. (3,1) D. (3,-5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 分別平分 的外角 、內(nèi)角 、外角 .以下結(jié)論: ① ;② ;③ 平分 ;④ ; ⑤ 其中正確的結(jié)論是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直,
(1)證明:Rt△ABM ∽Rt△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)Rt△ABM∽Rt△AMN,求此時(shí)x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com