甲,乙,丙三人各有郵票若干枚,要求互相贈(zèng)送.先由甲送給乙,丙,所給的枚數(shù)等于乙,丙原來(lái)各有的郵票數(shù);然后依同樣的游戲規(guī)則再由乙送給甲,丙現(xiàn)有的郵票數(shù),最后由丙送給甲,乙現(xiàn)有的郵票數(shù).互相送完后,每人恰好各有64枚.你能知道他們?cè)瓉?lái)各有郵票多少枚嗎?說(shuō)出你的思考過(guò)程.

解:設(shè)甲原有郵票x枚,乙原有郵票y枚,丙原有郵票z枚.
原有 xy z
第一次送后 x-y-z 2y 2z
第二次送后 2(x-y-z) 2y-(x-y-z)-2z 4z
第三次送后 4(x-y-z) 2[2y-(x-y-z)-2z] 4z-2(x-y-z)-[2y-(x-y-z)-2z]
根據(jù)第三次贈(zèng)送后列方程組,
,
③-②得 2z-y=8 ④,
②+①得 y-z=24 ⑤,
④+⑤得 z=32,
將z代入⑤得 y=56,
將y、z代入①得 x=104,
答:甲原有郵票104枚,乙原有郵票56枚,丙原有郵票32枚.
分析:假設(shè)甲原有郵票x枚,乙原有郵票y枚,丙原有郵票z枚.根據(jù)題目說(shuō)明列出三次贈(zèng)送的過(guò)程如下表
原有 xy z
第一次送后 x-y-z 2y 2z
第二次送后 2(x-y-z) 2y-(x-y-z)-2z 4z
第三次送后 4(x-y-z) 2[2y-(x-y-z)-2z] 4z-2(x-y-z)-[2y-(x-y-z)-2z]
根據(jù)第三次贈(zèng)送后的結(jié)果列出方程組
先化簡(jiǎn),最后代入消元法或加減消元法求出方程組的解即可.
點(diǎn)評(píng):解答此題的關(guān)鍵是用表格的方式列出三次贈(zèng)送郵票的過(guò)程,根據(jù)第三次結(jié)果列出方程組,用代入消元法或加減消元法求出方程組的解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲,乙,丙三人各有郵票若干枚,要求互相贈(zèng)送.先由甲送給乙,丙,所給的枚數(shù)等于乙,丙原來(lái)各有的郵票數(shù);然后依同樣的游戲規(guī)則再由乙送給甲,丙現(xiàn)有的郵票數(shù),最后由丙送給甲,乙現(xiàn)有的郵票數(shù).互相送完后,每人恰好各有64枚.你能知道他們?cè)瓉?lái)各有郵票多少枚嗎?說(shuō)出你的思考過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案