設(shè)E、F分別在正方形ABCD的邊BC,CD上滑動(dòng)保持且∠EAF=45°,AP⊥EF于點(diǎn)P.
(1)求證:AP=AB;
(2)若AB=5,求△ECF的周長(zhǎng).

【答案】分析:通過(guò)作輔助線(xiàn),①證明△ABF′≌△ADF和△EAF′≌△EAF,再通過(guò)面積公式得出AP=AB;
②三角形的周長(zhǎng)=三邊之和,由①中三角形的全等,通過(guò)等量代換,得出BE+BF′=EF′.
解答:證明:(1)延長(zhǎng)CB到F′,使BF′=DF,
在正方形ABCD中,AB=AD,∠ABC=∠D=90°,
∴∠ABF′=180°-∠ABC=90°=∠D,
∴△ABF′≌△ADF(SAS),
∴AF′=AF,∠1=∠2,
∴∠EAF′=∠1+∠3=∠2+∠3=90°-∠EAF=45°=∠EAF,
又∵EA=EA,
∴△EAF′≌△EAF(SAS),
∴EF′=EF,S△AEF'=S△ABF
EF′•AB=EF•AP,
∴AB=AP.

解:(2)C△CEF=EC+CF+EF
=EC+CF+EF′
=EC+BE+CF+BF′
=BC+CF+DF
=BC+CD=2AB=10.
點(diǎn)評(píng):本題是一道綜合題,考查三角形的全等,正方形的性質(zhì),以及等量代換的方法和轉(zhuǎn)化的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)E、F分別在正方形ABCD的邊BC,CD上滑動(dòng)保持且∠EAF=45°,AP⊥EF于點(diǎn)P.
(1)求證:AP=AB;
(2)若AB=5,求△ECF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京市期末題 題型:解答題

設(shè)E、F分別在正方形ABCD的邊BC,CD上滑動(dòng)保持且∠EAF=45°,AP⊥EF于點(diǎn)P。
(1)求證:AP=AB;
(2)若AB=5,求△ECF的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省珠海市文園中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)E、F分別在正方形ABCD的邊BC,CD上滑動(dòng)保持且∠EAF=45°,AP⊥EF于點(diǎn)P.
(1)求證:AP=AB;
(2)若AB=5,求△ECF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市四中九年級(jí)(上)開(kāi)學(xué)測(cè)驗(yàn)數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)E、F分別在正方形ABCD的邊BC,CD上滑動(dòng)保持且∠EAF=45°,AP⊥EF于點(diǎn)P.
(1)求證:AP=AB;
(2)若AB=5,求△ECF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年北京市西城區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)E、F分別在正方形ABCD的邊BC,CD上滑動(dòng)保持且∠EAF=45°,AP⊥EF于點(diǎn)P.
(1)求證:AP=AB;
(2)若AB=5,求△ECF的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案