(2009•肇慶)如圖,ABCD是正方形,G是BC上的一點(diǎn),DE⊥AG于E,BF⊥AG于F.
(1)求證:△ABF≌△DAE;
(2)求證:DE=EF+FB.

【答案】分析:(1)ABCD是正方形得到∠BAF+∠DAE=90°又∠ADE+∠DAE=90°,∴∠BAF=∠ADE,加上AB=DA,∠AFB=∠DEA,就可以證明△ABF≌△DAE;
(2)由△ABF≌△DAE?DE=AF=EF+AE,所以FB=AE,所以DE=EF+FB.
解答:證明:(1)∵DE⊥AG,BF⊥AG,
∴∠AED=∠AFB=90°.(1分)
∵ABCD是正方形,DE⊥AG,
∴∠BAF+∠DAE=90°,∠ADE+∠DAE=90°.
∴∠BAF=∠ADE.(2分)
又在正方形ABCD中,AB=AD,(3分)
在△ABF與△DAE中,∠AFB=∠DEA=90°,
∠BAF=∠ADE,AB=DA,
∴△ABF≌△DAE.(5分)

(2)∵△ABF≌△DAE,
∴AE=BF,DE=AF.(6分)
又AF=AE+EF,
∴AF=EF+FB.
∴DE=EF+FB.(7分)
點(diǎn)評(píng):本題考查了正方形的性質(zhì)和全等三角形的性質(zhì),多次轉(zhuǎn)換線段,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年河南省新鄉(xiāng)市第二十一中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•肇慶)如圖,已知一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù)(k為常數(shù),k≠0)的圖象相交點(diǎn)A(1,3).
(1)求這兩個(gè)函數(shù)的解析式及其圖象的另一交點(diǎn)B的坐標(biāo);
(2)觀察圖象,寫出使函數(shù)值y1≥y2的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2009•肇慶)如圖,已知一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù)(k為常數(shù),k≠0)的圖象相交點(diǎn)A(1,3).
(1)求這兩個(gè)函數(shù)的解析式及其圖象的另一交點(diǎn)B的坐標(biāo);
(2)觀察圖象,寫出使函數(shù)值y1≥y2的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省昆明市安寧市青龍學(xué)校中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

(2009•肇慶)如圖,已知一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù)(k為常數(shù),k≠0)的圖象相交點(diǎn)A(1,3).
(1)求這兩個(gè)函數(shù)的解析式及其圖象的另一交點(diǎn)B的坐標(biāo);
(2)觀察圖象,寫出使函數(shù)值y1≥y2的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例.4.4.反比例函數(shù)(解析版) 題型:解答題

(2009•肇慶)如圖,已知一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù)(k為常數(shù),k≠0)的圖象相交點(diǎn)A(1,3).
(1)求這兩個(gè)函數(shù)的解析式及其圖象的另一交點(diǎn)B的坐標(biāo);
(2)觀察圖象,寫出使函數(shù)值y1≥y2的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省肇慶市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•肇慶)如圖,已知一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù)(k為常數(shù),k≠0)的圖象相交點(diǎn)A(1,3).
(1)求這兩個(gè)函數(shù)的解析式及其圖象的另一交點(diǎn)B的坐標(biāo);
(2)觀察圖象,寫出使函數(shù)值y1≥y2的自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案