【題目】如圖,半⊙O的半徑為2,點(diǎn)P是⊙O直徑AB延長(zhǎng)線上的一點(diǎn),PT切⊙O于點(diǎn)T,MOP的中點(diǎn),射線TM與半⊙O交于點(diǎn)C.若∠P=20°,則圖中陰影部分的面積為( 。

A. 1+ B. 1+ C. 2sin20°+ D.

【答案】A

【解析】

連接OT、OC,可求得∠COM=30°,作CHAP,垂足為H,則CH=1,于是,S陰影=SAOC+S扇形OCB,代入可得結(jié)論.

連接OT、OC,

PT切⊙O于點(diǎn)T,

∴∠OTP=90°,

∵∠P=20°,

∴∠POT=70°,

MOP的中點(diǎn),

TM=OM=PM,

∴∠MTO=POT=70°

OT=OC,

∴∠MTO=OCT=70°,

∴∠OCT=180°-2×70°=40°,

∴∠COM=30°

CHAP,垂足為H,則CH=OC=1,

S陰影=SAOC+S扇形OCB=OACH+=1+,

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在足夠大的空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長(zhǎng);

(2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為( 。

A. ,-1) B. (2,﹣1) C. (1,- D. (﹣1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,點(diǎn)A、點(diǎn)B在直線l異側(cè),以點(diǎn)A為圓心,AB長(zhǎng)為半徑作弧交直線lC、D兩點(diǎn).分別以CD為圓心,AB長(zhǎng)為半徑作弧,兩弧在l下方交于點(diǎn)E,連結(jié)AE.

1)根據(jù)題意,利用直尺和圓規(guī)補(bǔ)全圖形;

2)證明:l垂直平分AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰中,的中點(diǎn),過(guò)點(diǎn),交于點(diǎn),交于點(diǎn).,則的長(zhǎng)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫一個(gè)面積為10的正方形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)三角形,使三角形三邊長(zhǎng)分別為2、、;
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各變量之間是反比例關(guān)系的是(  )

A. 存入銀行的利息和本金 B. 在耕地面積一定的情況下,人均占有耕地面積與人口數(shù)

C. 汽車行駛的時(shí)間與速度 D. 電線的長(zhǎng)度與其質(zhì)量

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn).

(1)求證:△ABD是等邊三角形;

(2)求證:BE=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在中,,延長(zhǎng)線上一點(diǎn),點(diǎn)上,且,請(qǐng)判斷并寫出之間的關(guān)系,并進(jìn)行證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案