【題目】下列各變量之間是反比例關(guān)系的是( )
A. 存入銀行的利息和本金 B. 在耕地面積一定的情況下,人均占有耕地面積與人口數(shù)
C. 汽車行駛的時間與速度 D. 電線的長度與其質(zhì)量
【答案】B
【解析】
根據(jù)每一個選項的題意,列出方程,然后由反比例函數(shù)的定義進行一一驗證即可.
解:A、根據(jù)題意得,y=(y是本金,x是利息,k是利率).由此看,y與x成正比例關(guān)系.故本選項錯誤;
B、根據(jù)題意,得y=(x是人口數(shù),y是人均占有耕地數(shù),k是一定的耕地面積).由此看y與x成反比例關(guān)系.故本選項正確;
C、根據(jù)題意,得S=vt,而S不是定值,所以不能判定v、t間的函數(shù)關(guān)系.故本選項錯誤;
D、電線的質(zhì)量與其長度、粗細等都有關(guān)系,所以不能判定它們的函數(shù)關(guān)系.故本選項錯誤;
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,.點為邊上一點(不與點重合),點為邊上一點,線段、相交于點,其中.
求證:;
若,求的長及四邊形的面積;
連接,若是以為腰的等腰三角形,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.
(1)填空:∠AOB= °,用m表示點A′的坐標:A′( , );
(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;
(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關(guān)系式;
②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為( 。
A. 1+ B. 1+ C. 2sin20°+ D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD繞點C順時針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;
(1)求證:AM=FM;
(2)若∠AMD=a.求證:=cosα.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點、、在軸上,且,分別過點、、作軸的平行線,與反比例函數(shù)的圖象分別交于點、、,分別過點、、作軸的平行線,分別與軸交于點、、,連接、、,若圖中三個陰影部分的面積之和為,則________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系xoy中,直線y=x+交x軸于點B,交y軸于點A,過點C(1,0)作x軸的垂線l,將直線l繞點C按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°).
(1)當直線l與直線y=x+平行時,求出直線l的解析式;
(2)若直線l經(jīng)過點A,①求線段AC的長;②直接寫出旋轉(zhuǎn)角α的度數(shù);
(3)若直線l在旋轉(zhuǎn)過程中與y軸交于D點,當△ABD、△ACD、△BCD均為等腰三角形時,直接寫出符合條件的旋轉(zhuǎn)角α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的代數(shù)式x2+bx+c,設(shè)代數(shù)式的值為y.下表中列出了當x分別取﹣1,0,1,2,3,4,5,…m,m+1…時對應的y值.
x | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | m | m+1 | |||
y | 10 | 5 | 2 | 1 | 2 | 5 | n | p | q |
(1)表中n的值為 ;
(2)當x= 時,y有最小值,最小值是 ;
(3)比較p與q的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com