已知拋物線經(jīng)過點(0,-5),頂點坐標(2,-9),
(1)求該拋物線的解析式;
(2)求該拋物線與x軸的交點坐標;
(3)寫出當(dāng)x取何值時,二次函數(shù)值大于零.
分析:(1)根據(jù)頂點坐標設(shè)拋物線頂點式解析式y(tǒng)=a(x-2)2-9,然后把點(0,-5)代入求出a的值,即可得解;
(2)令y=0,解關(guān)于x的一元二次方程,即可得解;
(3)根據(jù)二次函數(shù)的性質(zhì)解答.
解答:解:(1)∵拋物線頂點坐標(2,-9),
∴設(shè)拋物線解析式為y=a(x-2)2-9,
∵拋物線經(jīng)過點(0,-5),
∴a(0-2)2-9=-5,
解得a=1,
所以,該拋物線解析式為y=(x-2)2-9;

(2)令y=0,則(x-2)2-9=0,
解得x-2=±3,
所以x1=5,x2=-1,
所以,該拋物線與x軸的交點坐標(5,0),(-1,0);

(3)∵a=1>0,
∴拋物線開口向上,
∴x<-1或x>5時,二次函數(shù)值大于零.
點評:本題考查了待定系數(shù)法求二次函數(shù)解析式,拋物線與x軸的交點坐標問題,根據(jù)頂點坐標,利用頂點式解析式求解更加簡便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過點(1,5)和(3,5),則拋物線的對稱軸為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、已知拋物線經(jīng)過點A(-1,5),B(5,5),C(1,9),則該拋物線上縱坐標為9的另一點的坐標是
(3,9)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線經(jīng)過點A(1,0)、B(3,0)、C(0,3),以AB為直徑畫圓.
(1)求此拋物線的解析式;
(2)求該圓與拋物線交點(除A、B外)坐標;
(3)以AB的中點O′為圓心畫圓,該圓的半徑r與此拋物線的交點個數(shù)有何關(guān)系(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線經(jīng)過點A(-3,0),B(0,3),C(2,0)三點.
(1)求此拋物線的解析式;
(2)如果點D(1,m)在這條拋物線上,求m的值的點D關(guān)于這條拋物線對稱軸的對稱點E的坐標,并求出tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系xoy中,已知拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),拋物線對稱軸l與x軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)點P在拋物線上,且以A、O、M、P為頂點的四邊形四條邊的長度為四個連續(xù)的正整數(shù),請你直接寫出點P的坐標;
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點N,使△NAC的面積最大?若存在,請你求出點N的坐標;若不存在,請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案