【題目】解答題
(1)【問題提出】
如圖①,已知△ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將△BCE繞點C順時針旋轉60°至△ACF連接EF
試證明:AB=DB+AF

(2)【類比探究】
如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關系?請說明理由

(3)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎上將圖形補充完整,并寫出AB,DB,AF之間的數(shù)量關系,不必說明理由.

【答案】
(1)

證明:ED=EC=CF,

∵△BCE繞點C順時針旋轉60°至△ACF,

∴∠ECF=60°,∠BCA=60°,BE=AF,EC=CF,

∴△CEF是等邊三角形,

∴EF=EC,∠CEF=60°,

又∵ED=EC,

∴ED=EF,

∵△ABC是等腰三角形,∠BCA=60°,

∴△ABC是等邊三角形,

∴∠CAF=∠CBA=60°,

∴∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE,

∵∠CAF=∠CEF=60°,

∴A、E、C、F四點共圓,

∴∠AEF=∠ACF,

又∵ED=EC,

∴∠D=∠BCE,∠BCE=∠ACF,

∴∠D=∠AEF,

在△EDB和△FEA中,

(AAS)

∴△EDB≌△FEA,

∴DB=AE,BE=AF,

∵AB=AE+BE,

∴AB=DB+AF


(2)

證明:AB=BD﹣AF;

延長EF、CA交于點G,

∵△BCE繞點C順時針旋轉60°至△ACF,

∴∠ECF=60°,BE=AF,EC=CF,

∴△CEF是等邊三角形,

∴EF=EC,

又∵ED=EC,

∴ED=EF,∠EFC=∠BAC=60°,

∵∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,

∴∠FCG=∠FEA,

又∵∠FCG=∠ECD,∠D=∠ECD,

∴∠D=∠FEA,

由旋轉的性質(zhì),可得

∠CBE=∠CAF=120°,

∴∠DBE=∠FAE=60°,

在△EDB和△FEA中,

(AAS)

∴△EDB≌△FEA,

∴BD=AE,EB=AF,

∴BD=FA+AB,

即AB=BD﹣AF


(3)

證明:如圖③,

,

ED=EC=CF,

∵△BCE繞點C順時針旋轉60°至△ACF,

∴∠ECF=60°,BE=AF,EC=CF,BC=AC,

∴△CEF是等邊三角形,

∴EF=EC,

又∵ED=EC,

∴ED=EF,

∵AB=AC,BC=AC,

∴△ABC是等邊三角形,

∴∠ABC=60°,

又∵∠CBE=∠CAF,

∴∠CAF=60°,

∴∠EAF=180°﹣∠CAF﹣∠BAC

=180°﹣60°﹣60°

=60°

∴∠DBE=∠EAF;

∵ED=EC,

∴∠ECD=∠EDC,

∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,

又∵∠EDC=∠EBC+∠BED,

∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,

∵∠AEF=∠CEF+∠BEC=60°+∠BEC,

∴∠BDE=∠AEF,

在△EDB和△FEA中,

(AAS)

∴△EDB≌△FEA,

∴BD=AE,EB=AF,

∵BE=AB+AE,

∴AF=AB+BD,

即AB,DB,AF之間的數(shù)量關系是:

AF=AB+BD


【解析】(1)首先判斷出△CEF是等邊三角形,即可判斷出EF=EC,再根據(jù)ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE;然后根據(jù)全等三角形判定的方法,判斷出△EDB≌△FEA,即可判斷出BD=AE,AB=AE+BF,所以AB=DB+AF.(2)首先判斷出△CEF是等邊三角形,即可判斷出EF=EC,再根據(jù)ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∠FCG=∠FEA,再根據(jù)∠FCG=∠EAD,∠D=∠EAD,可得∠D=∠FEA;然后根據(jù)全等三角形判定的方法,判斷出△EDB≌△FEA,即可判斷出BD=AE,EB=AF,進而判斷出AB=BD﹣AF即可.(3)首先根據(jù)點E在線段BA的延長線上,在圖③的基礎上將圖形補充完整,然后判斷出△CEF是等邊三角形,即可判斷出EF=EC,再根據(jù)ED=EC,可得ED=EF,∠CAF=∠BAC=60°,再判斷出∠DBE=∠EAF,∠BDE=∠AEF;最后根據(jù)全等三角形判定的方法,判斷出△EDB≌△FEA,即可判斷出BD=AE,EB=AF,進而判斷出AF=AB+BD即可.
【考點精析】關于本題考查的等邊三角形的性質(zhì),需要了解等邊三角形的三個角都相等并且每個角都是60°才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,∠ACB的平分線交AB于D,已知∠DCB=2∠B,求∠ACD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的兩個實數(shù)根,且x1、x2滿足不等式x1x2+2(x1+x2)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ACB90°,A22.5°,斜邊AB的垂直平分線交AC于點D,點FAC上,點EBC的延長線上,CECF,連接BFDE.線段DEBF在數(shù)量和位置上有什么關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①畫出△ABC關于y軸對稱的△A1B1C1;
②畫出△ABC關于原點O成中心對稱的△A2B2C2

(2)求△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列結論:
①ac<0;
②當x>1時,y的值隨x值的增大而減小.
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的結論是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形的頂點的坐標為,點軸正半軸上,點在第三象限的雙曲線上,過點軸交雙曲線于點,連接,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,這是一個供滑板愛好者使用的U型池,該U型池可以看成是一個長方體去掉一個“半圓柱”,中間可供滑行部分的截面是半徑為4 m的半圓,其邊緣ABCD=20 m,點ECD上,CE=2 m.一滑板愛好者從A點滑到E點,則他滑行的最短路程約為____________(邊緣部分的厚度忽略不計,結果保留整數(shù).提示:482≈222).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點AE重合),在AE同側分別作等邊△ABC和等邊△CDEADBE交于點O,ADBC交于點PBECD交于點Q,連接PQ.以下五個結論:

①AD=BE;②PQ∥AE;③AP=BQ④DE=DP; ⑤∠AOB=60°

其中正確的結論的個數(shù)是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習冊答案