【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax﹣a為拋物線(a、b、c為常數(shù),a≠0)的“夢(mèng)想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢(mèng)想三角形”.
已知拋物線與其“夢(mèng)想直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“夢(mèng)想直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“夢(mèng)想三角形”,求點(diǎn)N的坐標(biāo);
(3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“夢(mèng)想直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(﹣2, );(1,0);(2)N點(diǎn)坐標(biāo)為(0, ﹣3)或(, );(3)E(﹣1,﹣)、F(0, )或E(﹣1,﹣)、F(﹣4, ).
【解析】試題分析:(1)由夢(mèng)想直線的定義可求得其解析式,聯(lián)立夢(mèng)想直線與拋物線解析式可求得A、B的坐標(biāo);
(2)當(dāng)N點(diǎn)在y軸上時(shí),過(guò)A作AD⊥y軸于點(diǎn)D,則可知AN=AC,結(jié)合A點(diǎn)坐標(biāo),則可求得ON的長(zhǎng),可求得N點(diǎn)坐標(biāo);當(dāng)M點(diǎn)在y軸上即M點(diǎn)在原點(diǎn)時(shí),過(guò)N作NP⊥x軸于點(diǎn)P,由條件可求得∠NMP=60°,在Rt△NMP中,可求得MP和NP的長(zhǎng),則可求得N點(diǎn)坐標(biāo);
(3)當(dāng)AC為平行四邊形的一邊時(shí),過(guò)F作對(duì)稱軸的垂線FH,過(guò)A作AK⊥x軸于點(diǎn)K,可證△EFH≌△ACK,可求得DF的長(zhǎng),則可求得F點(diǎn)的橫坐標(biāo),從而可求得F點(diǎn)坐標(biāo),由HE的長(zhǎng)可求得E點(diǎn)坐標(biāo);當(dāng)AC為平行四邊形的對(duì)角線時(shí),設(shè)E(﹣1,t),由A、C的坐標(biāo)可表示出AC中點(diǎn),從而可表示出F點(diǎn)的坐標(biāo),代入直線AB的解析式可求得t的值,可求得E、F的坐標(biāo).
(1)∵拋物線,∴其夢(mèng)想直線的解析式為,聯(lián)立夢(mèng)想直線與拋物線解析式可得: ,解得: 或,∴A(﹣2, ),B(1,0),故答案為: ;(﹣2, );(1,0);
(2)當(dāng)點(diǎn)N在y軸上時(shí),△AMN為夢(mèng)想三角形,如圖1,過(guò)A作AD⊥y軸于點(diǎn)D,則AD=2,在中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2, ),∴AC= =,由翻折的性質(zhì)可知AN=AC=,在Rt△AND中,由勾股定理可得DN= = =3,∵OD=,∴ON=﹣3或ON=+3,當(dāng)ON=+3時(shí),則MN>OD>CM,與MN=CM矛盾,不合題意,∴N點(diǎn)坐標(biāo)為(0, ﹣3);
當(dāng)M點(diǎn)在y軸上時(shí),則M與O重合,過(guò)N作NP⊥x軸于點(diǎn)P,如圖2,在Rt△AMD中,AD=2,OD=,∴tan∠DAM==,∴∠DAM=60°,∵AD∥x軸,∴∠AMC=∠DAO=60°,又由折疊可知∠NMA=∠AMC=60°,∴∠NMP=60°,且MN=CM=3,∴MP=MN=,NP=MN=,∴此時(shí)N點(diǎn)坐標(biāo)為(, );
綜上可知N點(diǎn)坐標(biāo)為(0, ﹣3)或(, );
(3)①當(dāng)AC為平行四邊形的邊時(shí),如圖3,過(guò)F作對(duì)稱軸的垂線FH,過(guò)A作AK⊥x軸于點(diǎn)K,則有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中,∵∠ACK=∠EFH,∠AKC=∠EHF,AC=EF,∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=,∵拋物線對(duì)稱軸為x=﹣1,∴F點(diǎn)的橫坐標(biāo)為0或﹣2,∵點(diǎn)F在直線AB上,∴當(dāng)F點(diǎn)橫坐標(biāo)為0時(shí),則F(0, ),此時(shí)點(diǎn)E在直線AB下方,∴E到y軸的距離為EH﹣OF=﹣=,即E點(diǎn)縱坐標(biāo)為﹣,∴E(﹣1,﹣);
當(dāng)F點(diǎn)的橫坐標(biāo)為﹣2時(shí),則F與A重合,不合題意,舍去;
②當(dāng)AC為平行四邊形的對(duì)角線時(shí),∵C(﹣3,0),且A(﹣2, ),∴線段AC的中點(diǎn)坐標(biāo)為(﹣2.5, ),設(shè)E(﹣1,t),F(x,y),則x﹣1=2×(﹣2.5),y+t=,∴x=﹣4,y=﹣t,代入直線AB解析式可得﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4, );
綜上可知存在滿足條件的點(diǎn)F,此時(shí)E(﹣1,﹣ )、F(0, )或E(﹣1,﹣)、F(﹣4, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在不透明的袋子中有四張標(biāo)著數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲.小明畫出樹(shù)狀圖如圖所示:
小華列出表格如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | ① | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
(1)根據(jù)樹(shù)形圖分析,小明的游戲規(guī)則是,隨機(jī)抽出一張卡片后 (填“放回”或“不放回”),再隨機(jī)抽出一張卡片;根據(jù)表格分析,小華的游戲規(guī)則是,隨機(jī)抽出一張卡片后 (填“放回”或“不放回”),再隨機(jī)抽出一張卡片。
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對(duì)為 。
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,誰(shuí)獲勝的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀與理解:
圖1是邊長(zhǎng)分別為a和b(a>b)的兩個(gè)等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與證明:
(1)操作:固定△ABC,將△C′DE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;
(2)操作:若將圖1中的△C′DE,繞點(diǎn)C按順時(shí)針?lè)较蛉我庑D(zhuǎn)一個(gè)角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;
猜想與發(fā)現(xiàn):
(3)根據(jù)上面的操作過(guò)程,請(qǐng)你猜想當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最大是多少?當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最小是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)動(dòng)形式屬于旋轉(zhuǎn)的是( )
A. 在空中上升的氫氣球 B. 飛馳的火車
C. 時(shí)鐘上鐘擺的擺動(dòng) D. 運(yùn)動(dòng)員擲出的標(biāo)槍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形的兩邊長(zhǎng)分別為3和5,則周長(zhǎng)L的取值范圍是( )
A.6<L<15
B.6<L<16
C.11<L<13
D.10<L<16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列對(duì)一元二次方程x2+x﹣3=0根的情況的判斷,正確的是( )
A. 有兩個(gè)不相等實(shí)數(shù)根 B. 有兩個(gè)相等實(shí)數(shù)根
C. 有且只有一個(gè)實(shí)數(shù)根 D. 沒(méi)有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義新運(yùn)算:A*B=A+B+AB,則下列結(jié)論正確的是( )
①2*1=5 ②2*(-3)= -7 ③(-5 )*8=37 ④(-7)*(-9)=47
A. ①②B. ①②③C. ③④D. ①②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com