【題目】已知拋物線(xiàn)y=x+4,

1)用配方法確定它的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸;

2x取何值時(shí),yx增大而減。

3x取何值時(shí),拋物線(xiàn)在x軸上方?

【答案】(1)它的頂點(diǎn)坐標(biāo)為(﹣1 ),對(duì)稱(chēng)軸為直線(xiàn)x=1;(2x1;(34x2

【解析】試題分析:1)用配方法時(shí),先提二次項(xiàng)系數(shù),再配方,寫(xiě)成頂點(diǎn)式,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)求頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸;

2)對(duì)稱(chēng)軸是x=-1,開(kāi)口向下,根據(jù)對(duì)稱(chēng)軸及開(kāi)口方向確定函數(shù)的增減性;

3)令y=0,確定函數(shù)圖象與x軸的交點(diǎn),結(jié)合開(kāi)口方向判斷x的取值范圍.

試題解析:(1)∵y=x+4=x2+2x8= [(x+129]= +,

∴它的頂點(diǎn)坐標(biāo)為(﹣1, ),對(duì)稱(chēng)軸為直線(xiàn)x=1

2∵拋物線(xiàn)對(duì)稱(chēng)軸是直線(xiàn)x=﹣1,開(kāi)口向下,∴當(dāng)x﹣1時(shí),yx增大而減;

3)當(dāng)y=0時(shí),即﹣+=0解得x1=2,x2=4,而拋物線(xiàn)開(kāi)口向下,

∴當(dāng)﹣4x2時(shí),拋物線(xiàn)在x軸上方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x=1是關(guān)于x的方程x+1=﹣x﹣1+2m的解,則m=(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)正常人的心跳平均每分70次,一天大約跳100800次,將100800用科學(xué)記數(shù)法表示為(  )
A.0.1008×106
B.1.008×106
C.1.008×105
D.10.08×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明想利用太陽(yáng)光測(cè)量樓高,他帶著皮尺來(lái)到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,小明邊移動(dòng)邊觀(guān)察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點(diǎn)A、E、C在同一直線(xiàn)上).已知小明的身高EF是1.7m,請(qǐng)你幫小明求出樓高AB(結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與y軸的正半軸交于點(diǎn)A,與x軸交于點(diǎn)B20),三角形ABO的面積為2.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在射線(xiàn)OB上運(yùn)動(dòng),動(dòng)點(diǎn)QB出發(fā),沿x軸的正半軸與點(diǎn)P同時(shí)以相同的速度運(yùn)動(dòng),過(guò)PPMX軸交直線(xiàn)ABM

1)求直線(xiàn)AB的解析式.

2)當(dāng)點(diǎn)P在運(yùn)動(dòng)時(shí),設(shè)MPQ的面積為S,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求St的函數(shù)關(guān)系式(直接寫(xiě)出自變量的取值范圍).

3)過(guò)點(diǎn)QQNX軸交直線(xiàn)ABN,在運(yùn)動(dòng)過(guò)程中(P不與B重合),是否存在某一時(shí)刻t(秒),使MNQ是等腰三角形?若存在,求出時(shí)間t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列長(zhǎng)度的四根木棒,能與長(zhǎng)度分別為2cm5cm的木棒構(gòu)成三角形的是(

A.3cmB.4 cmC.7cmD.10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各題中,不能用平方差公式進(jìn)行計(jì)算的是(

A.a+b)(a-bB.2x+1)(2x-1C.(-a-b)-a+bD.2a+3b)(3a-2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀新知:移項(xiàng)且合并同類(lèi)項(xiàng)之后,只含有偶次項(xiàng)的四次方程稱(chēng)作雙二次方程.其一般形式為ax4bx2c=0(a≠0),一般通過(guò)換元法解之,具體解法是設(shè) x2y,則原四次方程化為一元二次方程:ay2byc=0,解出y之后代入x2y,從而求出x的值.

例如解:4x4-8x2+3=0

解:設(shè)x2y,則原方程可化為:4y2-8y+3=0

a=4,b=-8,c=3

b2-4ac=(-8)2-4×4×3=16>0

y

y1, y2

∴當(dāng)y1時(shí),x2. ∴x1,x2=-;

當(dāng)y1時(shí),x2. ∴x3x4=-

小試牛刀:請(qǐng)你解雙二次方程:x4-2x2-8=0

歸納提高:

思考以上解題方法,試判斷雙二次方程的根的情況,下列說(shuō)法正確的是____________(選出所有的正確答案)

①當(dāng)b2-4ac≥0時(shí),原方程一定有實(shí)數(shù)根;

②當(dāng)b2-4ac<0時(shí),原方程一定沒(méi)有實(shí)數(shù)根;

③當(dāng)b2-4ac≥0,并且換元之后的一元二次方程有兩個(gè)正實(shí)數(shù)根時(shí),原方程有4個(gè)實(shí)數(shù)根,換元之后的一元二次方程有一個(gè)正實(shí)數(shù)根一個(gè)負(fù)實(shí)數(shù)根時(shí),原方程有2個(gè)實(shí)數(shù)根;

④原方程無(wú)實(shí)數(shù)根時(shí),一定有b2-4ac<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年在中國(guó)等發(fā)展中國(guó)家的帶動(dòng)下,全球可持續(xù)投資再創(chuàng)歷史新高,達(dá)1550億美元,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法可表示為( )美元.
A.1.55×1010
B.1.55×1011
C.1.55×1012
D.1.55×1013

查看答案和解析>>

同步練習(xí)冊(cè)答案