【題目】某次臺風來襲時,一棵筆直大樹樹干AB(假定樹干AB垂直于水平地面)被刮傾斜7°(即∠BAB′=7°)后折斷倒在地上,樹的頂部恰好接觸到地面D處,測得∠CDA37°,AD5米,求這棵大樹AB的高度.(結(jié)果保留根號)(參考數(shù)據(jù):sin370.6cos370.8,tan370.75

【答案】3+4)米.

【解析】

過點AAECD于點E,解RtAED,求出DEAE的長度,再解RtAEC,得出CEAC的長,進而可得出結(jié)論.

解:過點AAECD于點E,則∠AEC=∠AED90

∵在RtAED中,∠ADC37

cos37,

DE4,

sin37

AE3,

RtAEC中,

∵∠CAE90﹣∠ACE906030

CEAE,

AC2CE2,

ABAC+CE+ED2++43+4(米).

答:這棵大樹AB原來的高度是(3+4)米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD內(nèi)接于O,ABAC,BDO的直徑,AEBD,垂足為點E,交BC于點F

1)求證:FAFB

2)如圖2,分別延長AD,BC交于點G,點HFG的中點,連接DH,若tanACB,求證:DHO的切線;

3)在(2)的條件下,若DA3,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)

【答案】①②③④.

【解析】

試題分析:△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,

EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF 可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,=,又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正確.

考點:三角形綜合題.

型】填空
結(jié)束】
19

【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《中國詩詞大會》是央視首檔全民參與的詩詞節(jié)目,節(jié)目以“賞中華詩詞、尋文化基因、品生活之美”為基本宗旨,力求通過對詩詞知識的比拼及賞析,帶動全民重溫那些曾經(jīng)學過的古詩詞,分享詩詞之美,感受詩詞之趣,從古人的智慧和情懷中汲取營養(yǎng),涵養(yǎng)心靈.我市某中學舉辦了網(wǎng)上詩詞大賽,大賽的成績分為四個等級:優(yōu)秀、良好、及格、不及格(分別用A,BC,D表示).為了了解該校學生對詩詞的掌握程度,賽后隨機抽取了部分學生的成績進行整理,并將結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.

1)本次抽取的學生共有   人,扇形統(tǒng)計圖中不及格學生所占的圓心角的度數(shù)為   

2)請根據(jù)計算補全條形統(tǒng)計圖;

3)若某校有1200名學生,請你根據(jù)調(diào)查結(jié)果估計該校學生詩詞大賽成績?yōu)椤皟?yōu)秀”和“良好”兩個等級共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)yax2+bx+2的圖象交x軸于點A(﹣2,0),B3,0),交y軸于點CP是第一象限內(nèi)二次函數(shù)圖象上的動點.

1)求這個二次函數(shù)的表達式;

2)連接PB,PC,PO,若SPOCSPBC,求點P的坐標;

3)如圖2.連接AP,交直線BC于點D,當點D是線段BC的三等分點時,求tanADC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yax2+bx+ca≠0)的圖象與x軸交于AB兩點,與y軸交于點C0,3),且拋物線的頂點坐標為(1,4).

1)求拋物線的解析式;

2)如圖2,點D是第一象限拋物線上的一點,ADy軸于點E,設(shè)點D的橫坐標為m,設(shè)CDE的面積為S,求Sm的函數(shù)關(guān)系式(不必寫出自變量的取值范圍);

3)在(2)的條件下,連接AC,是否存在這樣的點D,使得∠DAB2ACO,若存在,求點D的坐標及相應(yīng)的S的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,,點是正方形所在平面內(nèi)一動點,滿足

1)當點在直線上方且時,求證:;

2)若,求點到直線的距離;

3)記,在點運動過程中,是否存在最大值或最小值?若存在,求出其值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,以為直徑作于點,的中點,連接.點上,連接并延長交的延長線于點

1)求證:的切線;

2)連接,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的中點,的中點,過點的延長線于點

(1)求證:四邊形是菱形;

(2),,求菱形的面積.

查看答案和解析>>

同步練習冊答案