【題目】如圖是一塊地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD⊥AD,求這塊地的面積.
【答案】解:連接AC,
∵CD⊥AD
∴∠ADC=90°,
∵AD=4,CD=3,
∴AC2=AD2+CD2=42+32=25,
又∵AC>0,
∴AC=5,
又∵BC=12,AB=13,
∴AC2+BC2=52+122=169,
又∵AB2=169,
∴AC2+BC2=AB2 ,
∴∠ACB=90°,
∴S四邊形ABCD=S△ABC﹣S△ADC=30﹣6=24m2 .
【解析】連接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面積減去△ACD的面積就是所求的面積.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用勾股定理的概念和勾股定理的逆定理,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩個(gè)相似三角形對(duì)應(yīng)邊之比是1:4,那么它們的對(duì)應(yīng)高線之比是( 。
A.1:4B.1:6C.1:8D.1:16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的邊長(zhǎng)為6,點(diǎn)A、C分別在x軸,y軸的正半軸上,點(diǎn)D(2,0)在OA上,P是OB上一動(dòng)點(diǎn),則PA+PD的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,E為AD與CF的交點(diǎn),AE=ED,已知△ABC的面積是1,△BEF的面積是 ,則△AEF的面積是;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣mx﹣2m2=0.
(1)求證:不論m為何值,該方程總有兩個(gè)實(shí)數(shù)根;
(2)若x=1是該方程的根,求代數(shù)式4m2+2m+5的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某淘寶店專銷某種品牌的運(yùn)動(dòng)服,每套進(jìn)價(jià)70元,售價(jià)120元/套.為了促銷,淘寶店決定凡是一次購(gòu)買數(shù)量不超過(guò)10套的,按原價(jià)每套120元購(gòu)買;10套以上的,每多買1套,每套降價(jià)1元,每多買2套,每套降價(jià)2元…^(例如,某人一次性購(gòu)買15套運(yùn)動(dòng)服,多出5套,按每套降價(jià)5元購(gòu)買,共需(15×115)元;但是最低價(jià)90元/套.
(1)求顧客一次至少買多少套,才能以最低價(jià)購(gòu)買?,
(2)寫(xiě)出當(dāng)一次購(gòu)買(>10)件時(shí),利潤(rùn)(元)與購(gòu)買量(件)之間的函數(shù)關(guān)系式;
(3)有一天,一位顧客買了35套運(yùn)動(dòng)服,另一位顧客買了40套運(yùn)動(dòng)服,淘寶店發(fā)現(xiàn)賣了40套反而比賣35套賺的錢(qián)少!為了使每次賣的數(shù)量多賺的錢(qián)也多,在其它促銷條件不變的情況下,最低價(jià)為90元/套至少要提高到多少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)是(﹣2,0),點(diǎn)B的坐標(biāo)是(6,0),點(diǎn)C在第一象限內(nèi)且△OBC為等邊三角形,直線BC交y軸于點(diǎn)D,過(guò)點(diǎn)A作直線AE⊥BD,垂足為E,交OC于點(diǎn)F.
(1)求直線BD的函數(shù)表達(dá)式;
(2)求線段OF的長(zhǎng);
(3)連接BF,OE,試判斷線段BF和OE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知相似三角形△ABC和△A′B′C′的面積比為1:4,則它們的相似比為( 。
A.1:4B.1:3C.1:2D.1:1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com