【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元.市場(chǎng)調(diào)査發(fā)現(xiàn),若每箱以50元的價(jià)格銷售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量(箱)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(rùn)(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1);(2),;(3)當(dāng)每箱蘋果的銷售價(jià)為55元時(shí),可以獲得最大利潤(rùn),最大利潤(rùn)為1125元.
【解析】
(1)根據(jù)題意找到平均每天銷售量(箱)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式;
(2)根據(jù)題意找到平均每天銷售利潤(rùn)W(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式;
(3)根據(jù)二次函數(shù)解析式求最值
解:(1)由題意,得,化簡(jiǎn),得.
(2)由題意,得,.
(3).
∵,
∴拋物線開口向下.
當(dāng)時(shí),有最大值.
又當(dāng)時(shí),隨的增大而增大,
∴當(dāng)元時(shí),的最大值為1125元.
∴當(dāng)每箱蘋果的銷售價(jià)為55元時(shí),可以獲得最大利潤(rùn),最大利潤(rùn)為1125元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,直線于點(diǎn).點(diǎn)在上,分別連接,,且的延長(zhǎng)線交于點(diǎn),為的切線交于點(diǎn).
(1)求證:;
(2)連接,若,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七、八年級(jí)學(xué)生對(duì)“防溺水”安全知識(shí)的掌握情況,從七、八年級(jí)各隨機(jī)抽取50名學(xué)生進(jìn)行測(cè)試,并對(duì)成績(jī)(百分制)進(jìn)行整理、描述和分析.部分信息如下:
a.七年級(jí)成績(jī)頻數(shù)分布直方圖:
b.七年級(jí)成績(jī)?cè)?/span>這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級(jí)成績(jī)的平均數(shù)、中位數(shù)如下:
年級(jí) | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問題:
(1)在這次測(cè)試中,七年級(jí)在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測(cè)試中,七年級(jí)學(xué)生甲與八年級(jí)學(xué)生乙的成績(jī)都是78分,請(qǐng)判斷兩位學(xué)生在各自年級(jí)的排名誰更靠前,并說明理由;
(4)該校七年級(jí)學(xué)生有400人,假設(shè)全部參加此次測(cè)試,請(qǐng)估計(jì)七年級(jí)成績(jī)超過平均數(shù)76.9分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:小胖同學(xué)遇到這樣一個(gè)問題,如圖1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的長(zhǎng);
小胖經(jīng)過思考后,在CD上取點(diǎn)F使得∠DEF=∠ADB(如圖2),進(jìn)而得到∠EFD=45°,試圖構(gòu)建“一線三等角”圖形解決問題,于是他繼續(xù)分析,又意外發(fā)現(xiàn)△CEF∽△CDE.
(1)請(qǐng)按照小胖的思路完成這個(gè)題目的解答過程.
(2)參考小胖的解題思路解決下面的問題:
如圖3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)停止,連接,以長(zhǎng)為直徑作.
(1)若,求的半徑;
(2)當(dāng)與相切時(shí),求的面積;
(3)連接,在整個(gè)運(yùn)動(dòng)過程中,的面積是否為定值,如果是,請(qǐng)直接寫出面積的定值,如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊CD上一點(diǎn)(點(diǎn)E不與點(diǎn)C,D重合),連接BE.取BE的中點(diǎn)M,過點(diǎn)M作FG⊥BE交BC于點(diǎn)F,交AD于點(diǎn)G.
(1)求證:BE=FG.
(2)連接CM,若CM=1,試求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD內(nèi)接于⊙O,∠DAB=90°.
(Ⅰ)如圖1,連接BD,若⊙O的半徑為6,弧AD=弧AB,求AB的長(zhǎng);
(Ⅱ)如圖2,連接AC,若AD=5,AB=3,對(duì)角線AC平分∠DAB,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系
(1)請(qǐng)?jiān)趫D中用描點(diǎn)法畫出二次函數(shù)y=-x2+2x+1的圖象;
(2)計(jì)算圖象與坐標(biāo)軸的交點(diǎn),頂點(diǎn)坐標(biāo),寫出對(duì)稱軸;
(3)指出當(dāng)x≤-3時(shí),y隨x的增大而增大還是y隨x的增大而減少;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D-d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度:
A(1,0)的距離跨度______________;
B(-, )的距離跨度____________;
C(-3,-2)的距離跨度____________;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是______________.
(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以D(-1,0)為圓心,2為半徑的圓,直線y=k(x-1)上存在到G2的距離跨度為2的點(diǎn),求k的取值范圍.
(3)如圖3,在平面直角坐標(biāo)系xOy中,射線OP:y=x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運(yùn)動(dòng),若射線OP上存在點(diǎn)到⊙E的距離跨度為2,求出圓心E的橫坐標(biāo)xE的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com