如圖,正方形ABCD的邊長(zhǎng)為5cm,Rt△EFG中,∠G=90°,F(xiàn)G=4cm,EG=3cm,且點(diǎn)B、F、C、G在直線l上,△EFG由F、C重合的位置開(kāi)始,以1cm/秒的速度沿直線l按箭頭所表示的方向作勻速直線運(yùn)動(dòng).
(1)當(dāng)△EFG運(yùn)動(dòng)時(shí),求點(diǎn)E分別運(yùn)動(dòng)到CD上和AB上的時(shí)間;
(2)設(shè)x(秒)后,△EFG與正方形ABCD重合部分的面積為y(cm2),求y與x的函數(shù)關(guān)系式;
(3)在下面的直角坐標(biāo)系中,畫(huà)出0≤x≤2時(shí)中函數(shù)的大致圖象;如果以O(shè)為圓心的圓與該圖象交于點(diǎn)P(x,),與x軸交于點(diǎn)A、B(A在B的左側(cè)),求∠PAB的度數(shù).

【答案】分析:(1)運(yùn)動(dòng)到CD的路程為FG長(zhǎng),運(yùn)動(dòng)到AB的路程長(zhǎng)為5+4=9,時(shí)間=路程÷速度
(2)應(yīng)根據(jù)時(shí)間不同得到的重合部分為:沒(méi)有完全進(jìn)入正方形時(shí)的三角形;整個(gè)△EFG的面積;沒(méi)有完全離開(kāi)時(shí)的梯形.
(3)列表,描點(diǎn),連線,把縱坐標(biāo)代入二次函數(shù)即可求得P坐標(biāo).可求得∠POB的正切值,得到∠POB的度數(shù).利用同弧所對(duì)的圓周角等于圓心角的一半可求得∠PAB的度數(shù).
解答:解:(1)∵FG=4,設(shè)E到CD上的時(shí)間為t1,
∴t1==4(秒).
設(shè)E到AB上的時(shí)間為t2,
∴t2==9(秒).(1分)

(2)①當(dāng)0<x≤4時(shí),設(shè)EF交CD于K,
∵△FCK∽△FGE,
,
∴CK=x.
∴y=•x•x=x2.(2分)
②當(dāng)4<x≤5時(shí),
y=S△FGE=×4×3=6.(3分)
③當(dāng)5<x≤9時(shí),y=6-(x-5)2.(4分)


(3)列表并畫(huà)圖.(正確畫(huà)出大致圖象就可得分)(6分)
∵點(diǎn)P(x,)在函數(shù)圖象上,
x2=
解得x1=,x2=-(舍去).
∴P().
∴tan∠POB=(7分)
∴POB=30度.
∴∠PAB=15度.(8分)
點(diǎn)評(píng):注意運(yùn)動(dòng)過(guò)程中不同時(shí)間出現(xiàn)的不同形狀,用到的知識(shí)點(diǎn)為:同弧所對(duì)的圓周角等于圓心角的一半
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案