如圖1,在Rt△ABC中,∠ACB=900,點P以每秒1cm的速度從點A出發(fā),沿折線AC-CB運動,到點B停止。過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數(shù)圖象如圖2所示。當點P運動5秒時,PD的長是【    】

A.1.5cm     B.1.2cm     C.1.8cm     D.2cm

 

【答案】

B。

【解析】由圖2知,點P在AC、CB上的運動時間時間分別是3秒和4秒,

∵點P的運動速度是每秒1cm ,∴AC=3,BC=4。

∵在Rt△ABC中,∠ACB=900,∴根據(jù)勾股定理得:AB=5。

如圖,過點C作CH⊥AB于點H,則易得△ABC∽△ACH。

,即。

∴如圖,點E(3,),F(xiàn)(7,0)。

設直線EF的解析式為,則

,解得:  。∴直線EF的解析式為。

∴當時,。故選B。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點.
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設運動時間為x秒,運動后的等腰梯形為DEF′G′(如圖2).
探究1:在運動過程中,四邊形BDG′G能否是菱形?若能,請求出此時x的值;若不能,請說明理由;
探究2:設在運動過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D在邊AB上運動,DE平分∠CDB交邊BC于點E,EM⊥BD垂足為M,EN⊥CD垂足為N.
精英家教網(wǎng)
(1)當AD=CD時,求證:DE∥AC;
(2)探究:AD為何值時,△BME與△CNE相似?
(3)探究:AD為何值時,四邊形MEND與△BDE的面積相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在平面直角坐標系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點.
(1)求線段AB的長;
(2)若一個扇形的周長等于(1)中線段AB的長,當扇形的半徑取何值時,扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點,垂足為點M,分別求出OM,OC,OD的長,并驗證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設BC=a,AC=b,AB=c.CD=b,試說明:
1
a2
+
1
b2
=
1
h2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,分別以AB、AC為底邊向△ABC的外側作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.試探究線段FD、FE的數(shù)量關系,并加以證明.
說明:如果你經(jīng)歷反復探索,沒有找到解決問題的方法,可以從圖2、3中選取一個,并分別補充條件∠CAB=45°、∠CAB=30°后,再完成你的證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,AB=AC=3,BD為AC邊的中線,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教網(wǎng)
(1)求AA1的長;
(2)如圖2,在Rt△A1B1C中按上述操作,則AA2的長為
 
;
(3)在Rt△A2B2C中按上述操作,則AA3的長為
 

(4)一直按上述操作得到Rt△An-1Bn-1C,則AAn的長為
 

查看答案和解析>>

同步練習冊答案