【題目】如圖,△ABC在直角坐標(biāo)系中
(1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo);
(2)求出△ABC的面積;
(3)如圖,將三角形ABC向右平移3個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度,得到對(duì)應(yīng)的三角形A1B1C1,并寫出點(diǎn)A1、B1、C1的坐標(biāo)
【答案】(1)A(-2,5),B(-5,-2),C(3,3);(2)20.5;(3)見解析,A1(1,3),B1(-2,-4),C1(6,1)
【解析】
(1)依據(jù)△ABC各點(diǎn)的位置,即可得到坐標(biāo);
(2)依據(jù)割補(bǔ)法進(jìn)行計(jì)算,即可得到△ABC的面積;
(3)依據(jù)△ABC向右平移2個(gè)單位,再向下平移3個(gè)單位,就得到的△A1B1C1,依據(jù)圖形即可得到A1,B1,C1的坐標(biāo).
解:(1)由圖可知:A(-2,5),B(-5,-2),C(3,3);
(2)△ABC的面積為7×8-×8×5-×5×2-×3×7=20.5;
(3)如圖所示:A1(1,3),B1(-2,-4),C1(6,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)有一個(gè)可以自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤(如圖).規(guī)定:顧客購(gòu)物元以上可以獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn) 盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí)指針落在哪一個(gè)區(qū)域就獲得相應(yīng)的獎(jiǎng)品 (指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形),下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù) | ||||||
落在“鉛筆"的次數(shù) | ||||||
落在“鉛筆"的頻率, (結(jié)果保留小數(shù)點(diǎn)后兩位) |
(1)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,獲得鉛筆的概率約為____ ;( 結(jié)果保留小數(shù)點(diǎn)后一位數(shù)字);
(2)鉛筆每只元,飲料每瓶元,經(jīng)統(tǒng)計(jì)該商場(chǎng)每天約有名顧各參加抽獎(jiǎng)活動(dòng),請(qǐng)計(jì)算該商場(chǎng)每天需要支出的獎(jiǎng)品費(fèi)用;
(3)在(2)的條件下,該商場(chǎng)想把每天支出的獎(jiǎng)品費(fèi)用控制在元左右,則轉(zhuǎn)盤上“一瓶飲料”區(qū)域的圓心角應(yīng)調(diào)整為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4,E,F分別是AB,AD邊上的動(dòng)點(diǎn),BE=AF,∠BAD=120°,則下列結(jié)論:①△BEC≌△AFC;②△ECF為等邊三角形;③∠AGE=∠AFC;④若AF=1,則. 其中正確結(jié)論的序號(hào)有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.
(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)如圖3,延長(zhǎng)BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.
①求∠CAM的度數(shù);
②當(dāng)FH=,DM=4時(shí),求DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題探究)
(1)如圖①,點(diǎn)E是正△ABC高AD上的一定點(diǎn),請(qǐng)?jiān)?/span>AB上找一點(diǎn)F,使EF=AE,并說(shuō)明理由;
(2)如圖②,點(diǎn)M是邊長(zhǎng)為2的正△ABC高AD上的一動(dòng)點(diǎn),求AM+MC的最小值;
(問(wèn)題解決)
(3)如圖③,A、B兩地相距600km,AC是筆直地沿東西方向向兩邊延伸的一條鐵路,點(diǎn)B到AC的最短距離為360km.今計(jì)劃在鐵路線AC上修一個(gè)中轉(zhuǎn)站M,再在BM間修一條筆直的公路。如果同樣的物資在每千米公路上的運(yùn)費(fèi)是鐵路上的兩倍。那么,為使通過(guò)鐵路由A到M再通過(guò)公路由M到B的總運(yùn)費(fèi)達(dá)到最小值,請(qǐng)確定中轉(zhuǎn)站M的位置,并求出AM的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“創(chuàng)科集團(tuán)”會(huì)議室內(nèi)的一個(gè)長(zhǎng)為6米、寬為4米的矩形ABCD墻面需要進(jìn)行裝飾,設(shè)計(jì)圖案如圖所示,將矩形ABCD墻面分割成3個(gè)區(qū)域,中間“十”字形區(qū)域甲的寬度均為1米,四個(gè)角為四個(gè)全等的直角三角形,△AEF,△BGH,△CMN,△DPQ為區(qū)域乙,剩下部分為區(qū)域丙,其中AE=BG=CN=DP,設(shè)EG=HM=NP=FQ=x(米)(1≤x≤3)
(1)當(dāng)x=2時(shí),求區(qū)域乙的面積;
(2)求區(qū)域丙的面積的最大值;
(3)為了圖案富有美感,設(shè)置區(qū)域乙與區(qū)域丙的面積之比為1:4,在區(qū)域甲、區(qū)域乙、區(qū)域丙分別嵌貼甲、乙、丙三種不同的裝飾板,這三種裝飾板每平方米的單價(jià)分別為a(百元),b(百元),c(百元)(a,b,c均為整數(shù),且6<a<10),若a+b+c=20,整個(gè)墻面嵌貼共花費(fèi)了150(百元),求三種裝飾板每平方米的單價(jià).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com