【題目】如圖,菱形ABCD的邊長為4,E,F分別是AB,AD邊上的動點,BE=AF,∠BAD=120°,則下列結(jié)論:①△BEC≌△AFC;②△ECF為等邊三角形;③∠AGE=∠AFC;④若AF=1,則. 其中正確結(jié)論的序號有________.
【答案】①②③④
【解析】
①易證△ABC為等邊三角形,得AC=BC,∠CAF=∠B,結(jié)合已知條件BE=AF可證△BEC≌△AFC;②得FC=EC,∠FCA=∠ECB,得∠FCE=∠ACB,進而可得結(jié)論;③證明∠AGE=∠BFC則可得結(jié)論;④分別證明△AEG∽△FCG和△FCG∽△ACF即可得出結(jié)論.
在四邊形是菱形中,
∵,
∴
∵
∴
∴△ABC為等邊三角形,
∴
又,
∴,故①正確;
∴,
∴∠FCE=∠ACB=60°,
∴為等邊三角形,故②正確;
∵∠AGE+∠GAE+∠AEG=180°,∠BEC+∠CEF+∠AEG=180°,
又∵∠CEF=∠CAB=60°,
∴∠BEC=∠AGE,
由①得,∠AFC=∠BEC,
∴∠AGE=∠AFC,故③正確;
∴∠AEG=∠FCG
∴△AEG∽△FCG,
∴,
∵∠AGE=∠FGC,∠AEG=∠FCG
∴∠CFG=∠GAE=∠FAC,
∴△ACF∽△FCG,
∴
∴
∵AF=1,
∴BE=1,
∴AE=3,
∴,故④正確.
故答案為:①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過第二象限內(nèi)的點作,軸的平行線,與,軸分別交于點,,與雙曲線分別交于點,.
下面三個結(jié)論,
①存在無數(shù)個點使;
②存在無數(shù)個點使;
③存在無數(shù)個點使.
所有正確結(jié)論的序號是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△ABE為等邊三角形,連接DE,CE,延長AE交CD于F點,則∠DEF的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);
(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABDE是平行四邊形,C為邊B D延長線上一點,連結(jié)AC、CE,使AB=AC.
(1)求證:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四邊形ABDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,關(guān)于x的二次函數(shù)y=ax2﹣2ax(a>0)的頂點為C,與x軸交于點O、A,關(guān)于x的一次函數(shù)y=﹣ax(a>0).
(1)試說明點C在一次函數(shù)的圖象上;
(2)若兩個點(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;
(3)若點E是二次函數(shù)圖象上一動點,E點的橫坐標(biāo)是n,且﹣1≤n≤1,過點E作y軸的平行線,與一次函數(shù)圖象交于點F,當(dāng)0<a≤2時,求線段EF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中
(1)請寫出△ABC各點的坐標(biāo);
(2)求出△ABC的面積;
(3)如圖,將三角形ABC向右平移3個單位長度,再向下平移2個單位長度,得到對應(yīng)的三角形A1B1C1,并寫出點A1、B1、C1的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)與x軸分別交于A(﹣3,0),B兩點,與y軸交于點C,拋物線的頂點E(﹣1,4),對稱軸交x軸于點F.
(1)請直接寫出這條拋物線和直線AE、直線AC的解析式;
(2)連接AC、AE、CE,判斷△ACE的形狀,并說明理由;
(3)如圖2,點D是拋物線上一動點,它的橫坐標(biāo)為m,且﹣3<m<﹣1,過點D作DK⊥x軸于點K,DK分別交線段AE、AC于點G、H.在點D的運動過程中,
①DG、GH、HK這三條線段能否相等?若相等,請求出點D的坐標(biāo);若不相等,請說明理由;
②在①的條件下,判斷CG與AE的數(shù)量關(guān)系,并直接寫出結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com