【題目】已知:半徑為1的⊙O1與x軸交于A、B兩點,圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A、B兩點,其頂點為F.

(1)求b、c的值及二次函數(shù)頂點F的坐標(biāo);

(2)寫出將二次函數(shù)y=﹣x2+bx+c的圖象向下平移1個單位再向左平移2個單位的圖象的函數(shù)表達(dá)式;

(3)經(jīng)過原點O的直線l與⊙O相切,求直線l的函數(shù)表達(dá)式.

【答案】(1)b=4 , c=-3,F(xiàn)(2,1) (2)y=﹣ (3)y=﹣x

【解析】

(1)根據(jù)⊙O1的半徑和圓心的坐標(biāo),可求得A、B兩點的坐標(biāo),然后將它們代入拋物線的解析式中,可求出b、c的值.進(jìn)而可根據(jù)二次函數(shù)的解析式求出頂點F的坐標(biāo).
(2)將原拋物線的解析式化為頂點式,然后再按題目給出的步驟,一步一步的進(jìn)行平移.
(3)過原點的直線是正比例函數(shù),只需求得直線與圓的切點的坐標(biāo),即可確定直線l的解析式.(根據(jù)圓的對稱性可知,符合條件的直線l應(yīng)該有兩條)

解:(1)由已知得:A(1,0),B(3,0)

由題意:

解得:

∴y=﹣x2+4x﹣3=﹣(x﹣2)2+1

∴頂點F(2,1)

(2)y=﹣x2

(3)設(shè)經(jīng)過原點O的直線l:y=kx(k≠0)與⊙O1相切于點C

則O1C⊥OC,OO1=2,O1C=1

∴OC=,∠O1OC=30°

設(shè)點C的坐標(biāo)為(xc,yc

k,得k=

∴y=x

由圓的對稱性,另一條直線l的解析式是y=﹣x.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點的直線與直線相交于點,動點在線段和射線上運動.

1)求直線的函數(shù)關(guān)系式.

2)求的面積.

3)是否存在點,使的面積與的面積相等?若存在求出此時點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線BC與半徑為6的⊙O相切于點B,點M是圓上的動點,過點MMCBC,垂足為C,MC與⊙O交于點D,AB為⊙O的直徑,連接MA、MB,設(shè)MC的長為x,(6<x<12).

(1)當(dāng)x=9時,求BM的長和△ABM的面積;

(2)是否存在點M,使MDDC=20?若存在,請求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=12,點EBC的中點,以CD為直徑作半圓CFD,點F為半圓的中點,連接AF,EF,圖中陰影部分的面積是( 。

A. 18+36π B. 24+18π C. 18+18π D. 12+18π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達(dá)到D處,此時在D處測得山頂B的仰角為60°,求山高BC(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABy軸和x軸分別交于點A、點B,與反比例函數(shù)y在第一象限的圖像交于點C(1,6)、點D(3,n).過點CCEy軸于E,過點DDFx軸于F

1)求m、n的值;

2)求直線AB的函數(shù)解析式;

3)試證明:△AEC≌△DFB;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,邊長為1的正方形ABCD,AC 、DB交于點HDE平分ADB,AC于點E聯(lián)結(jié)BE并延長,交邊AD于點F

1求證DC=EC;

2求△EAF的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線yx+b與雙曲線y交于點A(﹣1,﹣5).并分別與x軸、y軸交于點C、B

1)直接寫出b   ,m   ;

2)根據(jù)圖象直接寫出不等式x+b的解集為   ;

3)若點Dx軸的正半軸上,是否存在以點D、C、B構(gòu)成的三角形與△OAB相似?若存在,請求出D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平分

1)在圖1,若,求證:;

2)在圖2,若,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案