【題目】如圖,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O為△ADB的外接圓,DH⊥AB于點H,現(xiàn)將△AHD沿AD翻折得到△AED,AE交⊙O于點C,連接OC交AD于點G.
(1)求證:DE是⊙O的切線;
(2)若AB=10,求線段OG的長.
【答案】(1)見解析;(2)
【解析】
(1)連接半徑,由同圓的半徑相等得:OA=OD,利用等邊對等角可知:∠OAD=∠ODA,利用翻折的性質(zhì)可知:∠OAD=∠EAD,∠E=∠AHD=90°,證OD∥AE,得∠ODE=90°,所以DE與⊙O相切;
(2)先證明△OAC是等邊三角形,再證明OG∥BD,根據(jù)中位線定理可知:BD=2OG=5,于是得到結(jié)論.
解:(1)連接OD,
∵OA=OD,
∴∠OAD=∠ODA,
由翻折得:∠OAD=∠EAD,∠E=∠AHD=90°,
∴∠ODA=∠EAD,
∴OD∥AE,
∴∠E+∠ODE=180°,
∴∠ODE=90°,
∴DE與⊙O相切;
(2)∵將△AHD沿AD翻折得到△AED,
∴∠OAD=∠EAD=30°,
∴∠OAC=60°,
∵OA=OD,
∴△OAC是等邊三角形,
∴∠AOG=60°,
∵∠OAD=30°,
∴∠AGO=90°,
∴OG=AO=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓市民享受到更多的優(yōu)惠,某市針對乘坐地鐵的人群進行了調(diào)查.
(1)為獲得乘坐地鐵人群的月均花費信息,下列調(diào)查方式中比較合理的是 ;
A.對某小區(qū)的住戶進行問卷調(diào)查
B.對某班的全體同學(xué)進行問卷調(diào)查
C.在市里的不同地鐵站,對進出地鐵的人進行問卷調(diào)查
(2)調(diào)查小組隨機調(diào)查了該市1000人上一年乘坐地鐵的月均花費(單位:元),繪制了頻數(shù)分布直方圖,如圖所示.
① 根據(jù)圖中信息,估計平均每人乘坐地鐵的月均花費的范圍是 元;
A.20—60 B.60—120 C.120—180
②為了讓市民享受到更多的優(yōu)惠,相關(guān)部門擬確定一個折扣線,計劃使30%左右的人獲得折扣優(yōu)惠.根據(jù)圖中信息,乘坐地鐵的月均花費達(dá)到 元的人可以享受折扣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,拋物線y1=ax2+bx+c(a≠0)與x軸相交于點A(x1,0),B(x2,0),與y軸交于點C,且O,C兩點間的距離為3,x1x2<0,|x1|+|x2|=4,點A,C在直線y2=-3x+t上.
(1)求點C的坐標(biāo);
(2)當(dāng)y1隨著x的增大而增大時,求自變量x的取值范圍;
(3)將拋物線y1向左平移n(n>0)個單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個單位,當(dāng)平移后的直線與P有公共點時,求2n2-5n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點O是AB邊上一點,以O為圓心OB為半徑的⊙O與邊AB相交于點E,與AC邊相切于D點,連接OC交⊙O于點F.
(1)連接DE,求證:OC∥DE;
(2)若⊙O的半徑為3.
①連接DF,若四邊形OEDF為菱形,弧BD的長為_____(結(jié)果保留π)
②若AE=2,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0;②4a+2b+c>0;③<a<;④b>c.其中含所有正確結(jié)論的選項是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1:y=ax2+bx-1經(jīng)過點A(-2,1)和點B(-1,-1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.
(1)求拋物線C1的表達(dá)式;
(2)直接用含t的代數(shù)式表示線段MN的長;
(3)當(dāng)△AMN是以MN為直角邊的等腰直角三角形時,求t的值;
(4)在(3)的條件下,設(shè)拋物線C1與y軸交于點P,點M在y軸右側(cè)的拋物線C2上,連接AM交y軸于點K,連接KN,在平面內(nèi)有一點Q,連接KQ和QN,當(dāng)KQ=1且∠KNQ=∠BNP時,請直接寫出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A是拋物線y=ax2+bx+c的頂點,點B(0,2)是拋物線與y軸的交點,直線BC平行于x軸,交拋物線于點C,D為x軸上任意一點,若S△ABC=3,S△BCD=2,則點A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點M從點A出發(fā),沿A→B→C方向運動,當(dāng)點M到達(dá)點C時停止運動,過點M作MN⊥AM交CD于點N,設(shè)點M的運動路程為x,CN=y,圖2表示的是y與x的函數(shù)關(guān)系的大致圖象,則矩形ABCD的面積是( 。
A.20B.18C.10D.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com