【題目】如圖所示,數(shù)軸被折成,圓的周長為4個單位長度,在圓的4等分點處標(biāo)上數(shù)字0,1,2,3。先讓圓周上數(shù)字2所對應(yīng)的點與數(shù)軸上的數(shù)3所對應(yīng)的點重合,數(shù)軸固定,圓緊貼數(shù)軸沿著數(shù)軸的正方向滾動,那么數(shù)軸上的數(shù)2009將與圓周上的數(shù)字_________重合。

【答案】0

【解析】

數(shù)軸上的數(shù)只能與2、1、034個數(shù)中的一個數(shù)重合,這4個數(shù)反復(fù)的在數(shù)軸上循環(huán)出現(xiàn),由此可推出數(shù)軸上的數(shù)2009與圓周上的數(shù)字重合的數(shù)字.

23 重合, 14重合,05重合,36重合,接著27重合,18重合,09重合,310重合,以此類推……發(fā)現(xiàn):數(shù)軸上的數(shù)只能與2、1、0、34個數(shù)中的一個數(shù)重合,這4個數(shù)(2,1,0,3,2,1,0,3……..)反復(fù)的在數(shù)軸上循環(huán)出現(xiàn), 32009間有:20093+1=2007個數(shù),2007÷4=501 余數(shù)為3,也就是說2、1、0、34個數(shù)循環(huán)了501次,還要多走3個.當(dāng)余數(shù)為0,說明正好循環(huán),對應(yīng)數(shù)與3重合。余數(shù)為1則與2重合,余數(shù)為2則與1重合, 余數(shù)為3則與0重合.本題與數(shù)字0重合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD相交于點O,射線OEAB于點O,射線OFCD于點O,且∠AOF25°.求∠BOC與∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(1,0),B(4,0),C(0,﹣4)三點,點D是直線BC上方的拋物線上的一個動點,連結(jié)DC,DB,則△BCD的面積的最大值是( )

A.7
B.7.5
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1正方形ABCD中,EF、G、H分別是AB、BCCD、DA上的點,3AE=EB,有一只螞蟻從E點出發(fā),經(jīng)過F、G、H,最后回點E點,則螞蟻所走的最小路程是(

A.2B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別與軸,軸交于兩點.

(1)求線段AB的長度;

(2)若點在第二象限,且△為等腰直角三角形,求點的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了  名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補充完整;

(3)該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進行溝通的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

我們知道:一條線段有兩個端點,線段和線段表示同一條線段. 若在直線上取了三個不同的點,則以它們?yōu)槎它c的線段共有 ;若取了四個不同的點,則共有線段 ;…;依此類推,取了個不同的點,共有線段條.(用含的代數(shù)式表示)

類比探究:

以一個銳角的頂點為端點向這個角的內(nèi)部引射線.

(1)若引出兩條射線,則所得圖形中共有 個銳角;

(2)若引出條射線,則所得圖形中共有 個銳角.(用含的代數(shù)式表示)

拓展應(yīng)用:

一條鐵路上共有8個火車站,若一列火車往返過程中必須?棵總車站,則鐵路局需為這條線路準(zhǔn)備多少種車票?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定△ABC是等腰三角形(用序號寫出一種情形):_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平整的桌面上,有若干個棱長為的小正方體堆成一個幾何體,如圖所示

1)分別畫出這個幾何體從上面、左面看到的圖形;

2)如果把露在外面的面都涂上顏色,求涂上顏色的面的面積;

3)若你手里還有一些相同的小正方體,如果保持從上面、左面看到的圖形不變,最多可以再添加幾個小正方體?直接寫出結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案