【題目】如圖1,在ABC中,∠B60°,點M從點B出發(fā)沿射線BC方向,在射線BC上運動.在點M運動的過程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊AMN,連結(jié)CN

1)當(dāng)∠BAM   °時,AB2BM

2)請?zhí)砑右粋條件:   ,使得ABC為等邊三角形;

①如圖1,當(dāng)ABC為等邊三角形時,求證:CN+CMAC;

②如圖2,當(dāng)點M運動到線段BC之外(即點M在線段BC的延長線上時),其它條件不變(ABC仍為等邊三角形),請寫出此時線段CN、CM、AC滿足的數(shù)量關(guān)系,并證明.

【答案】130;(2ABAC;①證明見解析;②CN-CM=AC,理由見解析

【解析】

1)根據(jù)含30°角的直角三角形的性質(zhì)解答即可;

2)利用含一個60°角的等腰三角形是等邊三角形的判定解答;①利用等邊三角形的性質(zhì)和全等三角形的判定證明BAM≌△CAN從而利用全等三角形的性質(zhì)求解;②利用等邊三角形的性質(zhì)和全等三角形的判定證明BAM≌△CAN,從而利用全等三角形的性質(zhì)求解.

解:(1)當(dāng)∠BAM30°時,

∴∠AMB180°60°30°90°,

AB2BM

故答案為:30;

2)∵在ABC中,∠B=60°

∴當(dāng)AB=AC時,可得可得ABC為等邊三角形;

故答案為:ABAC

①如圖1中,

∵△ABCAMN是等邊三角形,

ABAC=BC,AMAN,∠BAC=∠MAN60°

∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,

即∠BAM=∠CAN,

BAMCAN中, ,

∴△BAM≌△CANSAS),

BMCN;

AC=BC=BM+CM=CM+CN

CN+CMAC;

CN-CM=AC,

理由:如圖2中,

∵△ABC與△AMN是等邊三角形,

ABACAMAN,∠BAC=∠MAN60°

∴∠BAC+MAC=∠MAN+MAC,

即∠BAM=∠CAN

在△BAM與△CAN中,

∴△BAM≌△CANSAS),

BMCN

AC=BC=BM-CM=CN-CM

CN-CM=AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O是線段AD的中點,分別以AODO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接ACBD,相交于點E,連接BC

1)證明:⊿ABC ≌ ⊿DCB

2)求∠AEB的大。

3)如圖2,△OAB固定不動,保持△OCD的形狀和大小不變,將△OCD繞點O旋轉(zhuǎn)(△OAB△OCD不能重疊),求∠AEB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形紙片OBCD的邊OBx軸上,ODy軸上,點C在第一象限,且.現(xiàn)將紙片折疊,折痕為EF(點E,F是折痕與矩形的邊的交點),點P為點D的對應(yīng)點,再將紙片還原。

I)若點P落在矩形OBCD的邊OB上,

①如圖①,當(dāng)點E與點O重合時,求點F的坐標(biāo);

②如圖②,當(dāng)點EOB上,點FDC上時,EFDP交于點G,若,求點F的坐標(biāo):

(Ⅱ)若點P落在矩形OBCD的內(nèi)部,且點E,F分別在邊OD,邊DC上,當(dāng)OP取最小值時,求點P的坐標(biāo)(直接寫出結(jié)果即可)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,DE是邊AB的垂直平分線,交ABE、交ACD,連接BD.

(1)若∠A40°,求∠DBC的度數(shù).

(2)若△BCD的周長為16cm,△ABC的周長為26cm,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于三個數(shù)ab,c,用max{ab,c}表示這三個數(shù)中最大數(shù),例如:max{-2,10}=1,max

解決問題:

1)填空:max{1,23}=______,如果max{3,4,2x-6}=2x-6,則x的取值范圍為______;

2)如果max{2,x+2,-3x-7}=5,求x的值;

3)如圖,在同一坐標(biāo)系中畫出了三個一次函數(shù)的圖象:y=-x-3,y=x-1y=3x-3請觀察這三個函數(shù)的圖象,

①在圖中畫出max{-x-3,x-13x-3}對應(yīng)的圖象(加粗);

max{-x-3,x-1,3x-3}的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點的坐標(biāo)分別是A(1,3),B(﹣2,﹣2),C(2,﹣1).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1

(2)寫出點A1,B1,C1的坐標(biāo);

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,在中,,∠ABC=30°,,點、E分別是邊、AC上動點,點不與點、重合,DEBC

1)如圖1,當(dāng)AE=1時,求長;

2)如圖2,把沿著直線翻折得到,設(shè)

①當(dāng)點F落在斜邊上時,求的值;

如圖3,當(dāng)點F落在外部時,EF、DF分別與相交于點H、G,如果△ABC和△DEF重疊部分的面積為,求的函數(shù)關(guān)系式及定義域.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司的午餐采用自助的形式,并倡導(dǎo)員工適度取餐,減少浪費該公司共有10個部門,且各部門的人數(shù)相同.為了解午餐的浪費情況,從這10個部門中隨機抽取了兩個部門,進行了連續(xù)四周(20個工作日)的調(diào)查,得到這兩個部門每天午餐浪費飯菜的重量,以下簡稱每日餐余重量(單位:千克),并對這些數(shù)據(jù)進行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,):

.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8

.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8

. 兩個部門這20個工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:

部門

平均數(shù)

中位數(shù)

眾數(shù)

6.4

7.0

/p>

6.6

7.2

根據(jù)以上信息,回答下列問題:

1)寫出表中的值;

2)在這兩個部門中,適度取餐,減少浪費做得較好的部門是________(填),理由是____________;

3)結(jié)合這兩個部門每日餐余重量的數(shù)據(jù),估計該公司(10個部門)一年(按240個工作日計算)的餐余總重量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABEF,則∠A、∠C、∠D、∠E滿足的數(shù)量關(guān)系是( )

A. A+∠C+∠D+∠E360°B. A-∠C+∠D+∠E180°

C. E-∠C+∠D-∠A90°D. A+∠D=∠C+∠E

查看答案和解析>>

同步練習(xí)冊答案