6.67.2 根據(jù)以上信息.回答下列問題:在這兩個(gè)部門中.“適度取餐.減少浪費(fèi) 做得較好的部門是 .理由是 ,(3)結(jié)合這兩個(gè)部門每日餐余重量的數(shù)據(jù).估計(jì)該公司一年的餐余總重量.">
【題目】某公司的午餐采用自助的形式,并倡導(dǎo)員工“適度取餐,減少浪費(fèi)”該公司共有10個(gè)部門,且各部門的人數(shù)相同.為了解午餐的浪費(fèi)情況,從這10個(gè)部門中隨機(jī)抽取了兩個(gè)部門,進(jìn)行了連續(xù)四周(20個(gè)工作日)的調(diào)查,得到這兩個(gè)部門每天午餐浪費(fèi)飯菜的重量,以下簡稱“每日餐余重量”(單位:千克),并對(duì)這些數(shù)據(jù)進(jìn)行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,):
.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8
.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
. 兩個(gè)部門這20個(gè)工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
| 6.4 |
| 7.0 |
/p> | 6.6 | 7.2 |
|
根據(jù)以上信息,回答下列問題:
(1)寫出表中的值;
(2)在這兩個(gè)部門中,“適度取餐,減少浪費(fèi)”做得較好的部門是________(填“”或“”),理由是____________;
(3)結(jié)合這兩個(gè)部門每日餐余重量的數(shù)據(jù),估計(jì)該公司(10個(gè)部門)一年(按240個(gè)工作日計(jì)算)的餐余總重量.
【答案】(1)m=6.8,n=6.9;(2) A,A部門每日餐余重量的平均數(shù)和中位數(shù)都小于B部門每日餐余重量的平均數(shù)和中位數(shù)(3)15600kg.
【解析】
(1)根據(jù)頻數(shù)(率)分布直方圖中數(shù)據(jù)即可得到結(jié)論;
(2)根據(jù)表中數(shù)據(jù)即可得到結(jié)論;
(3)根據(jù)A、B兩個(gè)部門這20個(gè)工作日每日餐余量的平均數(shù)即可得到結(jié)論.
(1)m==6.8,n=6.9;
(2)在A,B這兩個(gè)部門中,“適度取餐,減少浪費(fèi)”做得較好的部門是A,理由是A部門每日餐余重量的平均數(shù)和中位數(shù)都小于B部門每日餐余重量的平均數(shù)和中位數(shù);
故答案為A,A部門每日餐余重量的平均數(shù)和中位數(shù)都小于B部門每日餐余重量的平均數(shù)和中位數(shù).
(3)10×240×=15600kg,
答:估計(jì)該公司(10個(gè)部門)一年(按240個(gè)工作日計(jì)算)的餐余重量15600kg.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AC、BD相交于點(diǎn)O,AE平分∠BAD,交BC于E,若∠EAO=15°,則∠BOE的度數(shù)為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠B=60°,點(diǎn)M從點(diǎn)B出發(fā)沿射線BC方向,在射線BC上運(yùn)動(dòng).在點(diǎn)M運(yùn)動(dòng)的過程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊△AMN,連結(jié)CN.
(1)當(dāng)∠BAM= °時(shí),AB=2BM;
(2)請(qǐng)?zhí)砑右粋(gè)條件: ,使得△ABC為等邊三角形;
①如圖1,當(dāng)△ABC為等邊三角形時(shí),求證:CN+CM=AC;
②如圖2,當(dāng)點(diǎn)M運(yùn)動(dòng)到線段BC之外(即點(diǎn)M在線段BC的延長線上時(shí)),其它條件不變(△ABC仍為等邊三角形),請(qǐng)寫出此時(shí)線段CN、CM、AC滿足的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知以AE為直徑的半圓圓心為O,半徑為5,矩形ABCD的頂點(diǎn)B在直徑AE上,頂點(diǎn)C 在半圓上,AB=8,點(diǎn)P為半圓上一點(diǎn)(不與A、E兩點(diǎn)重合).
(1)矩形ABCD的邊BC的長為多少;
(2)將矩形沿直線AP折疊,點(diǎn)B落在點(diǎn)B′.
①點(diǎn)B′到直線AE的最大距離是多少;
②當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),如圖2所示,AB′交DC于點(diǎn)M.
求證:四邊形AOCM是菱形,并通過證明判斷CB′與半圓的位置關(guān)系;
③當(dāng)EB′∥BD時(shí),直接寫出EB′的長為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直x軸于點(diǎn)D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個(gè)單位,當(dāng)點(diǎn)C落在拋物線上時(shí),求m的值;
(3)在(2)的條件下,當(dāng)點(diǎn)C第一次落在拋物線上記為點(diǎn)E,點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn)Q,使以點(diǎn)B、E、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?
(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】車間有20名工人,某一天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表:
生產(chǎn)零件的個(gè)數(shù)(個(gè)) | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
工人人數(shù)(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);
(2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金秋十月,丹桂飄香,重慶雙福育才中學(xué)迎來了首屆行知?jiǎng)?chuàng)新科技大賽,初二年級(jí)某班共有18人報(bào)名參加航海組,航空組和無人機(jī)組三個(gè)項(xiàng)目組的比賽(每人限參加一項(xiàng)),其中航海組的同學(xué)比無人機(jī)組的同學(xué)的兩倍少3人,航空組的同學(xué)不少于3人但不超過9人,班級(jí)決定為航海組的每位同學(xué)購買2個(gè)航海模型,為航空組的每位同學(xué)購買3個(gè)航空模型,為無人機(jī)組的每位同學(xué)購買若干個(gè)無人機(jī)模型,已知航海模型75元每個(gè),航空模型98元每個(gè),無人機(jī)模型165元每個(gè),若購買這三種模型共需花費(fèi)6114元,則其中購買無人機(jī)模型的費(fèi)用是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)
(1)如圖1,等腰中,,,則______;
(知識(shí)應(yīng)用)
(2)如圖2,和都是等腰三角形,,、、三點(diǎn)在同一條直線上,連接.
①求證:;
②請(qǐng)寫出線段,,之間的等量關(guān)系式,并說明理由?
(3)如圖3,和均為等邊三角形,在內(nèi)作射線,作點(diǎn)關(guān)于的對(duì)稱點(diǎn),連接并延長交于點(diǎn),連接,.若,,求的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com