【題目】如圖,四邊形ABCD中,AD∥BC,AB=DC=AD,BD=AC,BD、AC相交于點O.
(1)求證:△ABO≌△DCO;
(2)寫出圖中所有與∠ACB相等的角.
【答案】(1)見解析;(2)圖中與∠ACB相等的角是∠ABD、∠ADB、∠DAC、∠DBC、∠DCA,理由見解析.
【解析】
(1)先利用SSS證明△BDA≌△CAD,得∠ABD=∠DCA,再利用AAS證明△AOB≌△DOC.
(2)利用平行線的性質(zhì),全等三角形的性質(zhì),可得出與∠ACB相等的角度.
(1)證明:在△BDA和△CAD中
∴△BDA≌△CAD(SSS)
∴∠ABD=∠DCA,
在△AOB和△DOC
∴△AOB≌△DOC(AAS);
(2)圖中與∠ACB相等的角是∠ABD、∠ADB、∠DAC、∠DBC、∠DCA,
理由:∵AD∥BC,
∴∠DAC=∠ACB,∠ADB=∠DBC,
∵AB=AD,AD=DC,
∴∠ABD=∠ADB,∠DAC=∠DCA,
∴∠ACB=∠DAC=∠DCA,
由(1)知,△AOB≌△DOC,
∴OA=OD,
∴∠DAC=∠ADB,
∴∠ACB=∠ABD=∠ADB=∠DAC=∠DBC=∠DCA,
即圖中與∠ACB相等的角是∠ABD、∠ADB、∠DAC、∠DBC、∠DCA.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】玲玲家準(zhǔn)備裝修一套新住房,若甲、乙兩個裝飾公司合作,需6周完成,共需裝修費為5.2萬元;若甲公司單獨做4周后,剩下的由乙公司來做,還需9周才能完成,共需裝修費4.8萬元.玲玲的爸爸媽媽商量后決定只選一個公司單獨完成.
(1)如果從節(jié)約時間的角度考慮應(yīng)選哪家公司?
(2)如果從節(jié)約開支的角度考慮呢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負(fù)實數(shù)x“四舍五入”到個位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時,若,則<x>=n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:
①<1.493>=1;
②<2x>=2<x>;
③若,則實數(shù)x的取值范圍是;
④當(dāng)x≥0,m為非負(fù)整數(shù)時,有;
⑤。
其中,正確的結(jié)論有 (填寫所有正確的序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點E是邊CD的中點,連接BE并延長,交AD延長線于點F,連接BD、CF.
(1)求證:△CEB≌△DEF;
(2)若AB=BF,試判斷四邊形BCFD的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖下圖所示,已知AB//CD, ∠B=30°,∠D=120°;
(1)若∠E=60°,則∠E=______;
(2)請?zhí)剿鳌螮與∠F之間滿足的數(shù)量關(guān)系?說明理由.
(3)如下圖所示,已知EP平分∠BEF,FG平分∠EFD,反向延長FG交EP于點P,求∠P的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個圖形有6個小圓,第2個圖形有10個小圓,第3個圖形有16個小圓,第4個圖形有24個小圓,…,依次規(guī)律,第9個圖形圓的個數(shù)為( )
A.94B.85C.84D.76
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):
溫度 /℃ | …… | -4 | -2 | 0 | 2 | 4 | 4.5 | …… |
植物每天高度增長量 /mm | …… | 41 | 49 | 49 | 41 | 25 | 19.75 | …… |
這些數(shù)據(jù)說明:植物每天高度增長量 關(guān)于溫度 的函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.
(1)你認(rèn)為是哪一種函數(shù),并求出它的函數(shù)關(guān)系式;
(2)溫度為多少時,這種植物每天高度增長量最大?
(3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度x應(yīng)該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點C與A重合,點D落到D′處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建國家衛(wèi)生城市,需要購買甲、乙兩種類型的分類垃圾桶替換原來的垃圾桶,,,三個小區(qū)所購買的數(shù)量和總價如表所示.
甲型垃圾桶數(shù)量(套) | 乙型垃圾桶數(shù)量(套) | 總價(元) | |
(1)問甲型垃圾桶、乙型垃圾桶的單價分別是每套多少元?
(2)求,的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com