精英家教網 > 初中數學 > 題目詳情

【題目】有兩張完全重合的矩形紙片,將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD,MF,若BD4cm,∠ADB30°

1)試探究線段BD與線段MF的數量關系和位置關系,并說明理由;

2)把△BCD與△MEF剪去,將△ABD繞點A順時針旋轉得△AB1D1,邊AD1FM于點K(如圖2),設旋轉角為ββ90°),當△AFK為等腰三角形時,求β的度數.

3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F2M2AD交于點P,A2M2BD交于點N,當NPAB時,求平移的距離.

【答案】1BDMF,BDMF;(2β的度數為60°15°;(3)平移的距離是(3cm

【解析】

1)由旋轉的性質得到BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=AFM=30°,進而可得∠DNM的大。

2)分兩種情形討論①當AK=FK時,②當AF=FK時,根據旋轉的性質得出結論.

3)求平移的距離是A2A的長度.在矩形PNA2A中,A2A=PN,只要求出PN的長度就行.用△DPN∽△DAB得出對應線段成比例,即可得到A2A的大。

1)結論:BD=MFBDMF.理由:

如圖1,延長FMBD于點N

由題意得:△BAD≌△MAF,∴BD=MF,∠ADB=AFM

又∵∠DMN=AMF,∴∠ADB+DMN=AFM+AMF=90°,∴∠DNM=90°,∴BDMF

2)如圖2

①當AK=FK時,∠KAF=F=30°,則∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;

②當AF=FK時,∠FAK180°﹣∠F=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;

綜上所述:β的度數為60°或15°;

3)如圖3

由題意得矩形PNA2A.設A2A=x,則PN=x.在RtA2M2F2中,∵F2M2=FM=4,∠F=ADB=30°,∴A2M2=2,A2F2=2,∴AF2=2x

∵∠PAF2=90°,∠PF2A=30°,∴AP=AF2tan30°=2x,∴PD=ADAP=22x

NPAB,∴∠DNP=B

∵∠D=D,∴△DPN∽△DAB,∴,∴,解得:x=,即A2A=,∴平移的距離是(cm

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,RtABC的內切圓⊙OABBC,AC分別切于點DE,F,且AC13AB12,∠ABC90°,求⊙O的半徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數與反比例函數的圖象交于點,,點在以為圓心,為半徑的⊙上,的中點,若長的最大值為,的值為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖所示,在ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B1cm/s的速度移動,點Q從點B開始沿BC邊向點C2cm/s的速度移動,當其中一點達到終點后,另外一點也隨之停止運動.

1)如果PQ分別從A,B同時出發(fā),那么幾秒后,PBQ的面積等于4cm2?

2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,PQ的長度等于5cm?

3)在(1)中,當P、Q出發(fā)幾秒時,PBQ的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列方程中;②;③;④,是一元二次方程的有(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=x2x+m的圖象經過點A(1,﹣2)

(1)求此函數圖像與坐標軸的交點坐標;

(2)P(-2y1),Q(5y2)兩點在此函數圖像上,試比較y1,y2的大小

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格中的每個小方格都是邊長為1的正方形,我們把以格點間的連線為邊的三角形稱為格點三角形,圖中的ABC是格點三角形.在建立平面直角坐標系后,點B的坐標為(-1,-1).

(1)ABC向左平移8格后得到A1B1C1,畫出A1B1C1的圖形并寫出點B1的坐標;

(2)ABC繞點C按順時針旋轉90°后得A2B2C2,畫出A2B2C2的圖形并寫出B2的坐標;

(3)ABC以點A為位似中心放大,使放大前后對應邊的比為12,畫出AB3C3的圖形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某網店銷售一款工藝品,每件的成本是50元,據市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.設銷售單價x元.

1)用含x的代數式表示現在的銷售數量為_________件;

2)當x為多少元時,網店既能讓利顧客,又能每天獲得銷售利潤4000元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,∠C90°,AC16cm,BC8cm,一動點P從點C出發(fā)沿著CB方向以2cm/s的速度運動,另一動點QA出發(fā)沿著AC邊以4cm/s的速度運動,PQ兩點同時出發(fā),運動時間為ts).

1)若PCQ的面積是ABC面積的,求t的值?

2PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.

查看答案和解析>>

同步練習冊答案