18.如圖,等腰直角△ABC中,∠ACB=90°,點(diǎn)E為△ABC內(nèi)一點(diǎn),且∠BEC=90°,將△BEC繞C點(diǎn)順時針旋轉(zhuǎn)90°,使BC與AC重合,得到△AFC,連接EF交AC于點(diǎn)M,已知BC=10,CF=6,則AM:MC的值為(  )
A.4:3B.3:4C.5:3D.3:5

分析 由旋轉(zhuǎn)可以得出△BEC≌△AFC,∠ECF=90°,就有EC=CF=6,AC=BC=10,∠BEC=∠AFC=90°,由勾股定理就可以求出AF的值,進(jìn)而得出CE∥AF,就有△CEM∽△AFM,就可以求出CM,DM的值,從而得出結(jié)論.

解答 解:∵△BEC繞C點(diǎn)旋轉(zhuǎn)90°使BC與AC重合,得到△ACF,
∴△BEC≌△AFC,∠ECF=90°,
∴EC=CF=6,AC=BC=10,∠BEC=∠DFC=90°.
在Rt△AFC中,由勾股定理,得
AF=8.
∵∠AFC=90°,
∴∠AFC+∠ECF=180°,
∴EC∥AF,
∴△CEM∽△AFM,
∴$\frac{CE}{AF}$=$\frac{CM}{AM}$=$\frac{6}{8}$,
∴AM:MC=4:3,
故選A.

點(diǎn)評 本題考查了旋轉(zhuǎn)的性質(zhì)的運(yùn)用,全等三角形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,平行線的判定及性質(zhì)的運(yùn)用,解答時證明三角形相似是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.有若干輛載重8噸的車運(yùn)一批貨物,每輛車裝載5噸,則剩下10噸貨物,每輛車裝載8噸,則最后一輛不滿也不空,則貨物有30或35噸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,是由一些相同的小正方體構(gòu)成的立體圖形的三視圖,這些相同的小正方體的個數(shù)是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.已知:A=a2-2ab+b2,B=a2+2ab+b2,且2A-3B+C=0.
(1)求:C的表達(dá)式;
(2)求:當(dāng)a=1,b=-1時C的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,點(diǎn)M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個等腰直角三角形,則稱M,N是線段AB的和諧分割點(diǎn).

(1)已知M,N是線段AB的和諧分割點(diǎn),若AM=4,則MN=4$\sqrt{2}$或4或2$\sqrt{2}$;
(2)如圖2,在△ABC中,F(xiàn)是AB邊上的任一點(diǎn),F(xiàn)G∥BC交AC于點(diǎn)G,D,E是線段BC的和諧分割點(diǎn),且EC=BD,連結(jié)AD,AE,分別交FC于點(diǎn)M,N.
求證:M,N是線段FG的和諧分割點(diǎn).
(3)如圖3,平移拋物線y=-2x2,分別得到拋物線L1,L2和L3,拋物線L1與x軸交于點(diǎn)A(x1,0),M(x2,0),拋物線L2與x軸交于點(diǎn)M,N,拋物線L3與x軸交于點(diǎn)N,B,拋物線L1,L2,L3的頂點(diǎn)C,D,E的縱坐標(biāo)分別記為yC,yD,yE,已知點(diǎn)M,N是線段AB的和諧分割點(diǎn)切MN>AM,試猜想yC與yD的數(shù)量關(guān)系,并證明你的結(jié)論.
(4)如圖4,在菱形ABCD中,∠ABC=β(β<90°),點(diǎn)E、F分別在BC、CD上,AE,AF分別交BD于點(diǎn)M,N,若∠EAF=$\frac{1}{2}$∠BAD,當(dāng)M,N是線段BD的和諧分割點(diǎn)時,直接寫出sinβ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.若最簡二次根式$\sqrt{1+2a}$與$\sqrt{5-2a}$可以合并,則a=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.已知方程kx+b=0的解是x=3,則一次函數(shù)y=kx+b的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在?ABCD中,AE、CF分別是∠DAB,∠BCD的平分線,若AB=10cm,DE=8cm,則EC=2cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機(jī)摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機(jī)摸出1個黑球的概率等于$\frac{4}{5}$,求m的值.

查看答案和解析>>

同步練習(xí)冊答案