如圖4,在△ABC中,AB=AC,D是邊BC的中點,一個圓過點A,交邊AB于點E,且與BC相切于點D,則該圓的圓心是
A.線段AE的中垂線與線段AC的中垂線的交點
B.線段AB的中垂線與線段AC的中垂線的交點
C.線段AE的中垂線與線段BC的中垂線的交點
D.線段AB的中垂線與線段BC的中垂線的交點
圖4
科目:初中數學 來源: 題型:
如圖,正方形ABCD的邊長為a,在AB、BC、CD、DA邊上分別取點A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在邊A1B1、B1C1、C1D1、D1A1上分別取點A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次規(guī)律繼續(xù)下去,則正方形AnBnCnDn的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖為一次函數y=kx+b(k≠0)的圖象,則下列正確的是( )
A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0
查看答案和解析>>
科目:初中數學 來源: 題型:
閱讀下面的材料:
如果函數y=f(x)滿足:對于自變量x的取值范圍內的任意x1,x2,
(1)若x1<x2,都有f(x1)<f(x2),則稱f(x)是增函數;
(2)若x1<x2,都有f(x1)>f(x2),則稱f(x)是增函數.
例題:證明函數f(x)=(x>0)是減函數.
證明:假設x1<x2,且x1>0,x2>0
f(x1)﹣f(x2)=﹣==
∵x1<x2,且x1>0,x2>0
∴x2﹣x1>0,x1x2>0
∴>0,即f(x1)﹣f(x2)>0
∴f(x1)>f(x2)
∴函數f(x)=(x>0)是減函數.
根據以上材料,解答下面的問題:
(1)函數f(x)=(x>0),f(1)==1,f(2)==.
計算:f(3)= ,f(4)= ,猜想f(x)=(x>0)是 減 函數(填“增”或“減”);
查看答案和解析>>
科目:初中數學 來源: 題型:
某公司欲招聘一名工作人員,對甲、乙兩位應聘者進行面試和筆試,他們的成績(百分制)如下表所示.
應聘者 | 面試 | 筆試 |
甲 | 87 | 90 |
乙 | 91 | 82 |
若公司分別賦予面試成績和筆試成績6和4的權,計算甲、乙兩人各自的平均成績,誰將被錄?
查看答案和解析>>
科目:初中數學 來源: 題型:
下列運算正確的是( 。
A. 5m+2m=7m2 B. ﹣2m2•m3=2m5
C. (﹣a2b)3=﹣a6b3 D. (b+2a)(2a﹣b)=b2﹣4a2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com