已知,如圖, BE、CF分別是△ABC的邊AC、AB上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連結(jié)AD、AG.請你判斷線段AD與AG有什么關(guān)系?并證明.
AD=AG,AD⊥AG。證明見解析
【解析】線段AD與AG的數(shù)量關(guān)系相等,位置關(guān)系是垂直,理由為:由BE垂直于AC,CF垂直于AB,利用垂直的定義得到一對角相等,再由一對對頂角相等,利用兩對對應(yīng)角相等的兩三角形相似得到三角形BHF與三角形CHE相似,由相似三角形的對應(yīng)角相等得到一對角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD與三角形ACG全等,由全等三角形的對應(yīng)邊相等可得出AD=AG,∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代換可得出∠AED=∠GAD=90°,即AG與AD垂直
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com