如圖,菱形ABCD中,∠B=60°,AB=2,E、F分別是BC、CD的中點(diǎn),連接AE、EF、AF,則△AEF的周長(zhǎng)為_(kāi)_______.

答案:
解析:

  答案:
  解析:第一部分:本題考查了菱形的有關(guān)性質(zhì)、勾股定理、等腰三角形、等邊三角形以及三角形全等等知識(shí),題目不是很難,但綜合性較強(qiáng).

  第二部分:連接AC.因?yàn)樗倪呅蜛BCD是菱形,所以AB=BC.又因?yàn)椤螧=60°,所以△ABC是等邊三角形.因?yàn)镋是BC的中點(diǎn),所以AE⊥BC.同理,AF⊥CD.易證得△ABE≌△ADE,所以AE=AF.因?yàn)锳B∥CD,∠B=60°,所以∠C=120°.又因?yàn)镃E=CF,所以∠CEF=30°,所以∠AEF=60°,所以△AEF是等邊三角形.由勾股定理得AE=,所以△AEF的周長(zhǎng)為3


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點(diǎn),且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點(diǎn)E,F(xiàn)分別為BC和CD的中點(diǎn),求證:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,菱形ABCD中,∠A=60°,AB=2,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿B→C→D向終點(diǎn)D運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以相同的速度沿A→D→B向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)的時(shí)間為x秒,當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)△APQ的面積為y,則反映y與x的函數(shù)關(guān)系的圖象是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點(diǎn),P是對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),若AB長(zhǎng)為2
3
,則PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:菱形ABCD中,E是AB的中點(diǎn),且CE⊥AB,AB=6cm.
求:(1)∠BCD的度數(shù);
(2)對(duì)角線(xiàn)BD的長(zhǎng);
(3)菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的長(zhǎng).
(2)求菱形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案