【題目】如圖,∠AOB=20°,點M,N分別是邊OA,OB上的定點,點P,Q分別是邊OB、OA上的動點,記∠MPQ=α,∠PQN=β,當MP+PQ+QN最小時,則β﹣α的值為_____.
【答案】40°.
【解析】
作M關(guān)于OB的對稱點M',N關(guān)于OA的對稱點N',連接M'N'交OA于Q,交OB于P,則MP+PQ+QN最小,易知∠OPM=∠OPM'=∠NPQ,∠OQP=∠AQN'=∠AQN,根據(jù)三角形的外角的性質(zhì)和平角的定義即可得到結(jié)論.
如圖,作M關(guān)于OB的對稱點M',N關(guān)于OA的對稱點N',連接M'N'交OA于Q,交OB于P,則MP+PQ+QN最小,
∴∠OPM=∠OPM'=∠NPQ,∠OQP=∠AQN'=∠AQN,
∴∠QPN(180°﹣α)=∠AOB+∠MQP=20°(180°﹣β),
∴180°﹣α=40°+(180°﹣β),
∴β﹣α=40°.
故答案為:40°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,AB=BC,E、M分別為AB、AC上的點,連接CE,BM交于點G,且BM⊥CE,O為AC的中點,連接BO交CE于點N.
(1)如圖①,若AB=6,2MO=AM,求BM的長;
(2)如圖②,連接OG、AG,若AG⊥OG,求證:AC=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準確地放入相應(yīng)的格口,還會感應(yīng)避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.
(1)求兩種機器人每臺每小時各分揀多少件包裹;
(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應(yīng)購進A種機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(﹣5,0),B(5,0),D(2,7),連接AD交y軸于C點.
(1)求C點的坐標;
(2)動點P從B點出發(fā)以每秒1個單位的速度沿BA方向運動,同時動點Q從C點出發(fā)也以每秒1個單位的速度沿y軸正半軸方向運動(當P點運動到A點時,兩點都停止運動).設(shè)從出發(fā)起運動了x秒.
①請用含x的代數(shù)式分別表示P,Q兩點的坐標;
②當x=2時,y軸上是否存在一點E,使得△AQE的面積與△APQ的面積相等?若存在,求E的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學(xué)的思路是:將△BPC繞點B逆時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,進而求出等邊△ABC的邊長為,問題得到解決.
請你參考李明同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎?wù)弑仨殢膿u獎機內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點A、D在y軸正半軸上,點B、C分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點C的坐標為(4,0),點E為AC上一點,且∠DEA=∠DBO,求BC+EC的長;
(3)如圖3,過D作DF⊥AC于F點,點H為FC上一動點,點G為OC上一動點,當H在FC上移動、點G在OC上移動時,始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.
(圖3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,且滿足BE=BC.連接CE并延長交AD于點F,連接AE,過B點作BG⊥AE于點G,延長BG交AD于點H.在下列結(jié)論中:
①AH=DF; ②∠AEF=45°; ③S四邊形EFHG=S△DEF+S△AGH,
其中正確的結(jié)論有_____________________.(填正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元。物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元。經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100。在銷售過程中,每天還要支付其他費用450元。
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式。
(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com