(2006•濱州)已知拋物線y=x2+(m-1)x+(m-2)與x軸相交于A、B兩點(diǎn),且線段AB=2,則m的值為   
【答案】分析:利用二次函數(shù)與x軸的交點(diǎn)坐標(biāo)關(guān)系,當(dāng)y=0時,求得二次函數(shù)與x軸的交點(diǎn).
解答:解:當(dāng)y=0時,x2+(m-1)x+(m-2)=0,
采用分解因式法得:(x+1)(x+m-2)=0,
解得:x1=-1,x2=2-m,
所以A、B兩點(diǎn)的坐標(biāo)為(-1,0),(2-m,0),
因?yàn)榫段AB=2,
所以-1-(2-m)=2或2-m-(-1)=2.
所以m=5或m=1.
故答案為:m=5或m=1.
點(diǎn)評:此題還考查了一元二次方程的解法,要注意選擇適宜的解題方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•濱州)已知:拋物線M:y=x2+(m-1)x+(m-2)與x軸相交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2
(Ⅰ)若x1x2<0,且m為正整數(shù),求拋物線M的解析式;
(Ⅱ)若x1<1,x2>1,求m的取值范圍;
(Ⅲ)試判斷是否存在m,使經(jīng)過點(diǎn)A和點(diǎn)B的圓與y軸相切于點(diǎn)C(0,2)?若存在,求出M:y=x2+(m-1)x+(m-2)的值;若不存在,試說明理由;
(Ⅳ)若直線l:y=kx+b過點(diǎn)F(0,7),與(Ⅰ)中的拋物線M相交于P,Q兩點(diǎn),且使,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:填空題

(2006•濱州)已知二次函數(shù)不經(jīng)過第一象限,且與x軸相交于不同的兩點(diǎn),請寫出一個滿足上述條件的二次函數(shù)解析式    .(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)“選擇、填空題”專練(一)(解析版) 題型:填空題

(2006•濱州)已知二次函數(shù)不經(jīng)過第一象限,且與x軸相交于不同的兩點(diǎn),請寫出一個滿足上述條件的二次函數(shù)解析式    .(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年四川省南充高中高一新生入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•濱州)已知:拋物線M:y=x2+(m-1)x+(m-2)與x軸相交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2
(Ⅰ)若x1x2<0,且m為正整數(shù),求拋物線M的解析式;
(Ⅱ)若x1<1,x2>1,求m的取值范圍;
(Ⅲ)試判斷是否存在m,使經(jīng)過點(diǎn)A和點(diǎn)B的圓與y軸相切于點(diǎn)C(0,2)?若存在,求出M:y=x2+(m-1)x+(m-2)的值;若不存在,試說明理由;
(Ⅳ)若直線l:y=kx+b過點(diǎn)F(0,7),與(Ⅰ)中的拋物線M相交于P,Q兩點(diǎn),且使,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•濱州)已知二次函數(shù)不經(jīng)過第一象限,且與x軸相交于不同的兩點(diǎn),請寫出一個滿足上述條件的二次函數(shù)解析式    .(答案不唯一)

查看答案和解析>>

同步練習(xí)冊答案