如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,DE=3,連接DB,過點E作EM∥BD,交BA的延長線于點M.
(1)求⊙O的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點P,當(dāng)∠APD=45º時,求圖中陰影部分的面積.
(1);(2)證明見解析;(3).
【解析】
試題分析:(1)連結(jié)OE,根據(jù)已知條件得出OC=OE,由勾股定理可求出OE的長;
(2)由(1)知∠AOE=60°,,從而得出∠BDE=60°,又BD∥ME,所以∠MED=∠BDE=60°即∠MEO=90°,從而得證;
(3)連結(jié)OF,由∠DPA=45°知∠EOF=2∠EDF=90°所以,通過計算得出結(jié)論.
試題解析:連結(jié)OE,如圖:
∵DE垂直平分半徑OA
∴OC=,,
∴∠OEC=30°
∴
(2)由(1)知:∠AOE=60°,,
∴
∴∠BDE=60°
∵BD∥ME,
∴∠MED=∠BDE=60°
∴∠MEO=90°
∴EM是⊙O的切線。
(3)連結(jié)OF
∵∠DPA=45°
∴∠EOF=2∠EDF=90°
∴
考點: 1.垂徑定理;2.圓周角定理;3.扇形的面積.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com